Determinantal Identities of -Tetranacci Sequences

 

PANKAJ

Department of Mathematics, Indira Gandhi University, Meerpur (Rewari)-122502, Haryana, India

*Corresponding Author E-mail:  pankajarora1242@yahoo.com

 

Abstract:

In this paper, we find some new determinantal identities using generalized k-Tetranacci sequences which are defined as:

where  are positive integers with  

The generalized k-Tetranacci sequences are

 

KEY WORDS: k-Fibonacci sequence, k-Lucas sequence, k-Tribonacci sequence, k-Tetranacci sequence

2010 MATHEMATICS SUBJECT CLASSIFICATIONS: 11B37, 11B83

 

 


1. INTRODUCTION:

The well known Fibonacci sequence has many interesting properties. The Fibonacci sequence has been generalized in many ways, some by preserving the initial conditions, and others by preserving the recurrence relation. Many properties of these types of sequences have been derived (See [1], [2], [3], [4], [5], [6], [7]). In this paper, we find some new determinantal identities using generalized k-Tetranacci sequences. Here, we give definitions of k-Fibonacci, k-Lucas, k-Tribonacci and k-Tetranacci sequences.

 

1.1.            Definition:

The k-Fibonacci sequence  is defined as,

 

for  with

 

1.2.       Definition:

The k-Lucas sequence  is defined as,

 

for  with

 

1.3.       Definition:

The k-Tribonacci sequence  is defined as,

for  with

 

1.4.       Definition:

The k-Tetranacci sequence  is defined as,

for  with

 

2.    GENERALIZED -TETRANACCI SEQUENCES

Now we define a family of k-Tetranacci sequences as:

 

 

where  are positive integers with  

The generalized k-Tetranacci sequences are

                                                                                                                                                                                      (1)

                                                                                                                                                                                      (2)

                                                                                                                                                                                      (3)

                                                                                                                                                                                       (4)

                                                                                                                                                                                      (5)

 

3.                DETERMINANTAL IDENTITIES OF K- TETRANACCI SEQUENCES:

3.1.            Theorem: If  are positive integers with  then

 

 

Proof: Let

 

Assume  then by (1),

Now,                           

 

Taking  common from  and  respectively, we get

 

 

Taking  common from  and  respectively, we get

 

Applying we have

 

 

Expanding by first row, we get

 

Applying we have

 

Applying we have

 

Applying we have

 

 

Put  and  we get

 

 

The following identities can be proved in a similar way as in Theorem 3.1.

 

 

 

 

3.2.       Theorem:

If  are positive integers with   then

 

 

3.3.       Theorem:

If  are positive integers with  then

 

 

3.4.            Theorem:

If  are positive integers with  then

 

 

 

3.5.            Theorem:

If  are positive integers with  then

 

 

3.6.            Theorem:

If  are positive integers with  then

 

 

 

REFERENCES:

1.     A. Feng, Fibonacci identities via determinant of tridiagonal matrix, Applied Mathematics and Computation, 217 (2011), 5978-5981.

2.     S. Falcon, On the generating matrices of the k-Fibonacci numbers, Proyecciones Journal of Mathematics, 32 (4) (2013), 347-357.

3.     S. Falcon, and A. Plaza, On the k-Fibonacci numbers, Chaos, Solitons and Fractals, 5(32) (2007), 1615-1624.

4.     S. Falcon, and A. Plaza, The k-Fibonacci hyperbolic functions, Chaos, Solitons and Fractals, 38(2) (2008), 409-420.

5.     S. Falcon, and A. Plaza, The k-Fibonacci sequence and the Pascal 2-triangle, Chaos, Solitons and Fractals, 33(1) (2007), 38-49.

6.     Pankaj, Some New Determinantal Identities of -Pell Sequences, Journal of Combinatorics, Information & System Sciences, 41(4) (2016), 207-213.

7.     Roji Lather and Manoj Kumar, Stability of k-Tribonacci Functional Equation in Non-Archimedean Space, International Journal of Computer Applications, 128(14) (2015), 27-30.

8.     N. J. Sloane, The online encyclopaedia of integer sequences, (2006).

 

 

 

 

Received on 30.03.2018       Modified on 13.04.2018

Accepted on 28.04.2018      İA&V Publications All right reserved

Research J. Science and Tech. 2019; 11(1):09-13.

DOI: 10.5958/2349-2988.2019.00002.0