ABSTRACT:
Let?? be the class of functionsf(z)=z+?_(n=2)^8¦?a_n z^n ?analytic in the unit discE={z:|z|<1}. Let S(a) denote the class of functions in ?? satisfying the condition Re{((1-a)zf^' (z))/(f(z)-f(-z) )+?a(zf^' (z) )?^'/(f(z)-f(-z) )^' }> 0,(0=a=1)and z?E.
We are interested in determining the upper bounds of the FeketeSzego ¨ functional |a_3-µa_2^2 | for functions of the class S(a).
MATHEMATICS SUBJECT CLASSIFICATION:30C45
Cite this article:
Harjinder Singh. FeketeSzego ̈ functional for a subclass of starlike functions with respect to symmetric points. Research J. Science and Tech 5(1): Jan.-Mar.2013 page 110-112.
Cite(Electronic):
Harjinder Singh. FeketeSzego ̈ functional for a subclass of starlike functions with respect to symmetric points. Research J. Science and Tech 5(1): Jan.-Mar.2013 page 110-112. Available on: https://rjstonline.com/AbstractView.aspx?PID=2013-5-1-15