Author(s):
Shivani Gavali, Pranali Gavali, Ashwini Kasved, Seema Kengar
Email(s):
shivanigavali0226@gmail.com
DOI:
10.52711/2349-2988.2024.00021
Address:
Shivani Gavali*, Pranali Gavali, Ashwini Kasved, Seema Kengar
JBVP, Vidyaniketan College of Pharmacy, Lakhewadi, Indapur, Maharashtra 413103.
*Corresponding Author
Published In:
Volume - 16,
Issue - 2,
Year - 2024
ABSTRACT:
The article outlines various valuable applications for eggshell waste, including its use as a catalyst in biodiesel production to minimize pollutants, as an absorbent for heavy metals in wastewater, as a biomaterial for bone tissue replacement, and as a fertilizer and calcium supplement in various domains. It highlights the increasing research interest in exploring these applications for eggshell waste. This highlights the potential of the eggshell membrane (ESM) as a biomaterial for wound dressing due to its abundant availability and favourable properties. The study developed an extraction protocol for ESM and evaluated its physical, chemical, mechanical, and biological properties for wound dressing applications. Results showed that ESM retained its structure and composition after extraction, with promising characteristics such as optical transparency, porosity, fluid absorption, thermal stability, and mechanical strength. Biological studies confirmed its excellent biocompatibility with corneal cells, suggesting its potential for ophthalmic wound treatment and other biomedical applications, contributing to sustainable biomaterial development. The article discusses the formation and mineralization of calcareous eggs, primarily focusing on studies of chicken eggshells. It highlights areas of uncertainty such as the role of amorphous calcium carbonate and the molecules involved in eggshell formation. Additionally, it mentions the recent advancements in avian genomics and proteomics, which will aid in comparative studies of egg shell constituents across different bird species.
Cite this article:
Shivani Gavali, Pranali Gavali, Ashwini Kasved, Seema Kengar. Concise Review on Integral Structure of Egg Shell Membrane. Research Journal of Science and Technology. 2024; 16(2):137-0. doi: 10.52711/2349-2988.2024.00021
Cite(Electronic):
Shivani Gavali, Pranali Gavali, Ashwini Kasved, Seema Kengar. Concise Review on Integral Structure of Egg Shell Membrane. Research Journal of Science and Technology. 2024; 16(2):137-0. doi: 10.52711/2349-2988.2024.00021 Available on: https://rjstonline.com/AbstractView.aspx?PID=2024-16-2-6
REFERENCES:
1. KF Hirsch, MJ Packard: Review of Fossil Eggs and their shell structure. Scanning Microscopy 1, 383-400 (1987)
2. KE Mikhailov. Fossil and recent eggshell in amniotic vertebrates: Fine Structure, pp. 1-80. The Palaeontology Association, London. (1997).
3. K Carpenter. Eggs, Nests and Baby Dinosaurs. Indiana University Press. Bloomington. Indiana, USA. (1997).
4. MT Hincke, O Wellman-Labadie, MD McKee, J Gautron, Y Nys, K Mann: Biosynthesis and structural assembly of eggshell components. In: Egg Bioscience and Biotechnology, Chapter 2. Ed: Mine Y. John Wiley and Sons, Hoboken, USA. (2008).
5. International Chicken Genome Sequencing Consortium: Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432, 695-716 (2004)
6. S. Ummartyotin, P. Pisitsak, and C. Pechyen, "Eggshell and bacterial cellulose composite membrane as absorbent material in active packaging," International Journal of Polymer Science, vol. 2016, pp. 1-8, 2016.
7. S. Hosseini, F. Eghbali Babadi, S. Masoudi Soltani, M. K. Aroua, S. Babamohammadi, and A. Mousavi Moghadam, "Carbon dioxide adsorption on nitrogen-enriched gel beads from calcined eggshell/sodium alginate natural composite," Process Safety and Environmental Protection, vol. 109, pp. 387-399, 2017.
8. L. Giraldo and J. C. Moreno-Piraján, "Study of adsorption of phenol on activated carbons obtained from eggshells," Journal of Analytical and Applied Pyrolysis, vol. 106,pp. 41-47, 2014.
9. M. Ait Taleb, R. Mamouni, M. Ait Benomar,A. Bakka, A. Mouna, M. L. Taha, A. Benlhachemi, B. Bakiz, and S. Villain, "Chemically treated eggshell wastes as a heterogeneous and eco-friendly catalyst for oximes preparation," Journal of Environmental Chemical Engineering, vol. 5, no. 2, pp. 1341-1348, 2017.
10. F. J. S. Barros, R. Moreno-Tost, J. A. Cecilia,A. L. Ledesma-Muñoz, L. C. C. de Oliveira,F. M. T. Luna, and R. S. Vieira, "Glycerol oligomers production by etherification using calcined eggshell as catalyst," Molecular Catalysis, vol. 433, pp. 282-290, 2017.
11. S. Park, K. S. Choi, D. Lee, D. Kim, K. T.Lim, K.-H. Lee, H. Seonwoo, and J. Kim, "Eggshell membrane: Review and impact on engineering," Biosystems Engineering,
12. F. Zheng, X. Lin, H. Tu, S. Li and X. Huang, " Visible - light photoreduction, adsorption , matrix conversion and membrane separation for ultrasensitive chromium determination in natural water by x - ray fluorescence" Sensors and Actuators B: Chemical, vol. 226,pp. 500-505, 2016.
13. H.-R. An, S. Y. Park, J. Y. Huh, H. Kim, Y.-C. Lee, Y. B. Lee, Y. C. Hong, and H. U. Lee, "Nanoporous hydrogenated TiO2 photocatalysts generated by underwater discharge plasma treatment for solar photocatalytic applications," Applied Catalysis B: Environmental, vol. 211, pp. 126-136, 2017.
14. J. Podporska-Carroll, A. Myles, B. Quilty, D.E. McCormack, R. Fagan, S. J. Hinder, D. D. Dionysiou, and S. C. Pillai, "Antibacterial properties of F-doped ZnO visible light photocatalyst," Journal of Hazardous Materials, vol. 324, Part A, pp. 39-47, 2017.
15. L. Xu, Y. Zhou, Z. Wu, G. Zheng, J. He, and Y. Zhou, "Improved photocatalytic activity of nanocrystalline ZnO by coupling with CuO," Journal of Physics and Chemistry of Solids, vol. 106, pp. 29-36, 2017.
16. S. Li, S. Hu, J. Zhang, W. Jiang, and J. Liu, "Facile synthesis of Fe2O3 nanoparticles anchored on Bi2MoO6 microflowers with improved visible light photocatalytic activity," Journal of Colloid and Interface Science, vol. 497, pp. 93-101, 2017.
17. S. R. Mirmasoomi, M. Mehdipour Ghazi, and M. Galedari, "Photocatalytic degradation of diazinon under visible light using TiO2/Fe2O3 nanocomposite synthesized by ultrasonic- assisted impregnation method," Separation and Purification Technology, vol. 175, pp. 418-427, 2017.
18. D. Yue, X. Qian, M. Kan, M. Ren, Y. Zhu, L.Jiang, and Y. Zhao, "Sulfurated [NiFe]-based layered double hydroxides nanoparticles as efficient co-catalysts for photocatalytic hydrogen evolution using CdTe/CdS quantum dots," Applied Catalysis B: Environmental, vol. 209, pp. 155-160, 2017.
19. L. Hu, G. Deng, W. Lu, S. Pang, and X. Hu, "Deposition of CdS nanoparticles on MIL- 53(Fe) metal-organic framework with enhanced photocatalytic degradation of RhB under visible light irradiation," Applied Surface Science, vol. 410, pp. 401-413, 2017.
20. S. Ummartyotin and C. Pechyen, "Role of ZnO on nylon 6 surface and the photocatalytic efficiency of methylene blue for wastewater treatment," Colloid and Polymer Science, Article vol. 294, no. 7, pp. 1217-1224, 2016.
21. S. Ummartyotin and B. Tangnorawich, "Data on the growth of ZnO nanorods on Nylon 6 and photocatalytic activity," Data in Brief, vol. 8, pp. 643-647, 2016.
22. P. Zhang, T. Wang, and H. Zeng, "Design of Cu-Cu2O/g-C3N4 nanocomponent photocatalysts for hydrogen evolution under visible light irradiation using water-soluble Erythrosin B dye sensitization," Applied Surface Science, vol. 391, Part B, pp. 404-414, 2017.
23. X. Zhang, B. Peng, T. Peng, L. Yu, R. Li, and J. Zhang, "A new route for visible/near- infrared-light-driven H2 production over titania: Co-sensitization of surface charge transfer complex and zinc phthalocyanine," Journal of Power Sources, vol. 298, pp. 30- 37, 2015.
24. N. Aman, N. N. Das, and T. Mishra, "Effect of N-doping on visible light activity of TiO2– SiO2 mixed oxide photocatalysts," Journal of Environmental Chemical Engineering, vol.4, no. 1, pp. 191-196, 2016.
25. X. Wang, L. Pang, X. Hu, and N. Han, "Fabrication of ion doped WO3 photocatalysts through bulk and surface doping," Journal of Environmental Sciences, vol. 35, pp. 76-82, 2015. Sheikhshoaie, S. Ramezanpour, and M. Khatamian, "Synthesis and characterization of thallium doped Mn3O4 as superior sunlight photocatalysts," Journal of Molecular Liquids, vol. 238, pp. 248-253, 2017.
26. D. A. Oliveira, P. Benelli, and E. R. Amante, "A literature review on adding value to solid residues: Egg shells," Journal of Cleaner Production, vol. 46, pp. 42-47, 2013.
27. W.Pie-Yi,Method of producing eggshell powder.http "http://www.wipo.int/pctdb/images1/patents" HYPERLINK "http://www.wipo.int/pctdb/images1/patents" http://www.wipo.int/pctdb/images1/patents "http://www.wipo.int/pctdb/images1/patents"HYPERLINK"http://www.wipo.int/pctdb/images1/patents"://www.wipo.int/pctdb/images1/patents cope/41/0b/b/000b.pdf 2004.
28. Z. Wei, C. Xu, B. Li, Biores. Tech. 100 (2009) 2883.
29. MT Hincke, O Wellman-Labadie, MD McKee, J Gautron, Y Nys, K Mann: Biosynthesis and structural assembly of eggshell components. In: Egg Bioscience and Biotechnology, Chapter 2. Ed: Mine Y. John Wiley and Sons, Hoboken, USA. (2008).
30. Y Nys, MT Hincke, JL Arias, JM Garcia-Ruiz , S Solomon: Avian Eggshell Mineralization. Poult Avian Biol Rev 10, 143-166 (1999).
31. Nys Y, J Gautron, JM Garcia-Ruiz, MT Hincke: Avian eggshell mineralization: biochemical and functional characterization of matrix proteins. Comptes Rendus Paleovol 3, 549-562 (2004).
32. BD Palmer, LJ Guillette Jr.: Alligators provide evidence for the evolution of an archosaurian mode of oviparity. Biol Reprod 46, 39-47 (1992).
33. BD Palmer, LJ Guillette Jr.: Alligators provide evidence for the evolution of an archosaurian mode of oviparity. Biol Reprod 46, 39-47 (1992).
34. KF Hirsch, MJ Packard: Review of Fossil Eggs and their shell structure. Scanning Microscopy 1, 383-400 (1987)36). JL Arias, DJ Fink, SQ Xiao, AH Heuer, AI Caplan:
35. Biomineralization and eggshells: cell-mediated acellular compartments of mineralized extracellular matrix. Int Rev Cytol 45, 217-250 (1993).
36. JL Arias, M Cataldo, MS Fernandez, E Kessi: Effect of beta-aminoproprionitrile on eggshell formation. Br Poult Sci 38, 349-54 (1997).
37. SD Chowdhury, RH Davis: Influence of dietary osteolathyrogens on the ultrastructure of shell and membranes of eggs from laying hens. Br Poult Sci 36, 575- 83 (1995).
38. Y Nys, J Zawadzki, J Gautron, AD Mills: Whitening of brown-shelled eggs: mineral composition of uterine fluid and rate of protoporphyrin deposition. Poult Sci 70, 1236- 45 (1991).
39. A Hernandez-Hernandez, J Gomez-Morales, AB Rodriguez-Navarro, J Gautron, Y Nys, JM Garcia-Ruiz: Identification of some active proteins in the process of hen eggshell formation. Cryst Growth Des 8, 4330-4339 (2008).
40. A Hernandez-Hernandez, AB Rodriguez-Navarro, J Gomez-Morales, C Jimenez-Lopez, Y Nys, JM Garcia-Ruiz: Influence of model globular proteins with different isoelectric points on the precipitation of calcium carbonate. Cryst Growth Des 8, 1495-1502 (2008).
41. A Hernandez-Hernandez, ML Vidal, J Gomez-Morales, AB Rodriguez-Navarro, V Labas, J Gautron, Y Nys, JM Garcia-Ruiz: Influence of eggshell matrix proteins on the precipitation of calcium carbonate (CaCO3). J Cryst Growth 310, 1754-1759 (2008).
42. RMG Hamilton: The microstructure of the hen’s egg – a short review. Food Microstruct 5, 99-110 (1986).
43. JE Dennis, S-Q Xiao, M Agarwal, DJ Fink, AH Heuer, AI Caplan: Microstructure of matrix and mineral components of eggshells from white leghorn chickens (Gallus gallus). J Morphol 228, 287-306 (1996).
44. YC Chien, MT Hincke, MD McKee: Avian eggshell structure and osteopontin. Cells Tissues Organs 189, 38- 43 (2009).
45. MS Fernandez, Moya A, Lopez L, JL Arias:Secretion pattern, ultrastructural localization and function of extracellular matrix molecules involved in eggshell formation. Matrix Biol 19, 793-803 (2001).
46. M Panheleux, M Bain, MS Fernandez, I Morales, J Gautron, JL Arias, SE Solomon, M Hincke, Y Nys:Organic matrix composition and ultrastructure of eggshell: a comparative study. Br Poult Sci 40, 240-52 (1999).
47. Hincke, M.T.; Nys, Y.; Gautron, J. The role of matrix proteins in eggshell formation. J. Poult. Sci. 2010, 47, 208–219. [CrossRef].
48. Mann, K.; Maek, B.; Olsen, J.V. Proteomic analysis of the acid soluble organic matrix of the chicken calcified eggshell layer.Proteomics 2006, 6, 3801–3810.
49. Nakano, T.; Ikawa, N.I.; Ozimek, L. Chemical composition of chicken eggshell and shell membranes. Poult. Sci. 2003, 82, 510–514.
50. Gairon, J.; Hincke, M.T.; Panheleux, M.; Garcia-Ruiz, J.M.; Boldicke, T.; Nys, Y. Ovotransferrin is a matrix protein of the hen eggshell membranes and basal calcified layer. Connect. Tissue Res. 2001, 42, 255–267.
51. Hincke, M.T.; Gautron, J.; Panheleux, M.; Garcia-Ruiz, J.; McKee, M.D.; Nys, Y. Identification and localization of lysozyme as a component of eggshell membranes and eggshell matrix. Matrix Biol. 2000, 19, 443–453.
52. Nys, Y.; Gautron, J.; Garcia-Ruiz, J.M.; Hincke, M.T. Avian eggshell mineralization: Biochemical and functional characterization of matrix proteins. Comptes Rendus Palevol 2004, 3, 549–562.
53. Arias, J.L.; Fink, D.J.; Xiao, S.-Q.; Heuer, A.H.; Caplan, A.I. Biomineralization and Eggshells: Cell-Mediated Acellular Com-partments of Mineralized Extracellular Matrix. In International Review of Cytology; Jeon, K.W., Jarvik, J., Eds.; Academic Press: Cambridge, MA, USA, 1993; Volume 145, pp. 217–250.
54. Li, Y.; Li, Y.; Liu, S.; Tang, Y.; Mo, B.; Liao, H. New zonal structure and transition of the membrane to mammillae in the eggshell of chicken Gallus domesticus. J. Struct. Biol. 2018, 203, 162–169.
55. Lee, S.-M.; Grass, G.; Kim, G.-M.; Dresbach, C.; Zhang, L.; Gösele, U.; Knez, M.Low-temperature ZnO atomic layer deposition on biotemplates: Flexible photocatalytic ZnO structures from eggshell membranes. Phys. Chem. Chem. Phys. 2009, 11, 3608–3614.
56. Bellairs, R.; Boyde, A. Scanning electron microscopy of the shell membranes of the hen’s egg. Z. Für Zellforsch. Mikrosk. Anat.1969, 96, 237–249.
57. Liong, J.; Frank, J.F.; Bailey, S. Visualization of Eggshell Membranes and Their Interaction with Salmonella enteritidis Using Confocal Scanning Laser Microscopy. J. Food Prot. 1997, 60, 1022–1028.
58. Zhou, J.; Wang, S.; Nie, F.; Feng, L.; Zhu, G.; Jiang, L. Elaborate architecture of the hierarchical hen’s eggshell. Nano Res. 2011, 4,171–179.
59. Baláž, M. Eggshell membrane biomaterial as a platform for applications in materials science. Acta Biomater. 2014, 10, 3827–3843.
60. Ruff, K.J.; Morrison, D.; Duncan, S.A.; Back, M.; Aydogan, C.; Theodosakis, J.Beneficial effects of natural eggshell membrane versus placebo in exercise-induced joint pain, stiffness, and cartilage turnover in healthy, postmenopausal women. Clin. Interv. Aging 2018, 13, 285–295.
61. Pillai, M.M.; Gopinathan, J.; Senthil Kumar, R.; Sathish Kumar, G.; Shanthakumari, S.; Sahanand, K.S.; Bhattacharyya, A.;Selvakumar, R. Tissue engineering of human knee meniscus using functionalized and reinforced silk-polyvinyl alcohol composite three-dimensional scaffolds: Understanding the in vitro and in vivo behavior. J. Biomed. Mater. Res. Part A 2018, 106, 1722–1731.
62. Adali, T.; Kalkan, R.; Karimizarandi, L. The chondrocyte cell proliferation of a chitosan/silk fibroin/egg shell membrane hydrogels. Int. J. Biol. Macromol. 2019, 124, 541–547.
63. Ohto-Fujita, E.; Shimizu, M.; Sano, S.; Kurimoto, M.; Yamazawa, K.; Atomi, T.; Sakurai, T.; Murakami, Y.; Takami, T.; Murakami,T.; et al. Solubilized eggshell membrane supplies a type III collagen-rich elastic dermal papilla. Cell Tissue Res. 2019, 376, 123–135.
64. Rønning, S.B.; Berg, R.S.; Høst, V.; Veiseth-Kent, E.; Wilhelmsen, C.R.; Haugen, E.; Suso, H.P.; Barham, P.; Schmidt, R.; Pedersen, M.E. Processed Eggshell Membrane Powder Is a Promising Biomaterial for Use in Tissue Engineering. Int. J. Mol. Sci. 2020, 21,8130.
65. Ahmed, T.A.E.; Suso, H.P.; Hincke, M.T. Experimental datasets on processed eggshell membrane powder for wound healing.Data Brief 2019, 26, 104457.
66. Vuong, T.T.; Rønning, S.B.; Ahmed, T.A.E.; Brathagen, K.; Høst, V.; Hincke, M.T.; Suso, H.P.; Pedersen, M.E. Processed eggshell membrane powder regulates cellular functions and increase MMP-activity important in early wound healing processes. PLoS ONE 2018, 13, e0201975.
67. Jia, H.; Hanate, M.; Aw, W.; Itoh, H.; Saito, K.; Kobayashi, S.; Hachimura, S.; Fukuda,S.; Tomita, M.; Hasebe, Y.; et al. Eggshell membrane powder ameliorates intestinal inflammation by facilitating the restitution of epithelial injury and alleviating microbial dysbiosis. Sci. Rep. 2017, 7, 43993.
68. Jung, J.Y.; Yun, H.C.; Kim, T.M.; Joo, J.W.; Song, I.S.; Rah, Y.C.; Chang, J.; Im, G.J.;Choi, J. Analysis of Effect of Eggshell Membrane Patching for Moderate-to-Large Traumatic Tympanic Membrane Perforation. J. Audiol. Otol. 2017, 21, 39–43.
69. Ramli, N.S.; Jia, H.; Sekine, A.; Lyu, W.; Furukawa, K.; Saito, K.; Hasebe, Y.; Kato, H.Eggshell membrane powder lowers plasma triglyceride and liver total cholesterol by modulating gut microbiota and accelerating lipid metabolism in high-fat diet-fed mice.Food Sci. Nutr. 2020, 8, 2512–2523.
70. Kulshreshtha, G.; Ahmed, T.A.E.; Wu, L.; Diep, T.; Hincke, M.T. A novel eco-friendly green approach to produce particalized eggshell membrane (PEM) for skin health applications. Biomater. Sci. 2020, 8, 5346–5361.
71. Benson, K.F.; Ruff, K.J.; Jensen, G.S. Effects of natural eggshell membrane (NEM) on cytokine production in cultures of peripheral blood mononuclear cells: Increased suppression of tumor necrosis factor-α levels after in vitro digestion. J. Med. Food 2012, 15,360–368.
72. Vuong, T.T.; Rønning, S.B.; Suso, H.-P.; Schmidt, R.; Prydz, K.; Lundström, M.; Moen, Pedersen, M.E. The extracellular matrix of eggshell displays anti-inflammatory activities through NF-κB in LPS-triggered human immune cells. J. Inflamm. Res. 2017, 10,83–96.
73. Vuong, T.T.; Rønning, S.B.; Suso, H.-P.; Schmidt, R.; Prydz, K.; Lundström, M.; Moen, Pedersen, M.E. The extracellular matrix of eggshell displays anti-inflammatory activities through NF-κB in LPS-triggered human immune cells. J. Inflamm. Res. 2017, 10,83–96.
74. Li, J.; Zhai, D.; Lv, F.; Yu, Q.; Ma, H.; Yin, J.; Yi, Z.; Liu, M.; Chang, J.; Wu, C.Preparation of copper-containing bioactive glass/eggshell membrane nanocomposites for improving angiogenesis, antibacterial activity and wound healing. Acta Biomater.2016, 36, 254–266.
75. Preda, N.; Costas, A.; Beregoi, M.; Apostol, N.; Kuncser, A.; Curutiu, C.; Iordache, F.;Enculescu, I. Functionalization of eggshell membranes with CuO-ZnO based p-n junctions for visible light induced antibacterial activity against Escherichia coli. Sci. Rep.2020, 10, 20960.
76. Li, X.; Ma, M.; Ahn, D.U.; Huang, X. Preparation and characterization of novel eggshell membrane-chitosan blend films for potential wound-care dressing: From waste to medicinal products. Int. J. Biol. Macromol. 2019, 123, 477–484.
77. Liu, M.; Luo, G.; Wang, Y.; Xu, R.; Wang, Y.; He, W.; Tan, J.; Xing, M.; Wu, J. Nano-silver-decorated microfibrous eggshell membrane: Processing, cytotoxicity assessment and optimization, antibacterial activity and wound healing. Sci. Rep. 2017, 7, 436
78. Li, X.; Cai, Z.; Ahn, D.U.; Huang, X. Development of an antibacterial nanobiomaterial for wound-care based on the absorption of AgNPs on the eggshell membrane. Colloids Surf. B Biointerfaces 2019, 183, 110449.
79. Armitage, O.E.; Strange, D.; Oyen, M.L. Biomimetic calcium carbonate-gelatin composites as a model system for eggshell mineralization. J. Mater. Res. 2012, 27, 3157–3164.
80. Rose-Martel, M.; Smiley, S.; Hincke, M.T. Novel identification of matrix proteins involved in calcitic biomineralization. J. Proteom. 2015, 116, 81–96.
81. Zhang, Y.; Liu, Y.; Ji, X.; Banks, C.E.; Song, J. Flower-like agglomerates of hydroxyapatite crystals formed on an egg-shell membrane. Colloids Surf. B Biointerfaces 2011, 82, 490–496..
82. Fernández, M.S.; Valenzuela, F.; Arias, J.I.; Neira-Carrillo, A.; Arias, J.L. Is the snail shell repair process really influenced by eggshell membrane as a template of foreign scaffold? J. Struct. Biol. 2016, 196, 187–196.
83. Xu, Z.; Neoh, K.G.; Kishen, A. A biomimetic strategy to form calcium phosphate crystals on type I collagen substrate. Mater. Sci. Eng. C 2010, 30, 822–826.
84. Arias, J.L.; Silva, K.; Neira-Carrillo, A.; Ortiz, L.; Fernández, M. Polycarboxylated Eggshell Membrane Scaffold as Template for Calcium Carbonate Mineralization. Crystals 2020, 10, 797.
85. Golafshan, N.; Gharibi, H.; Kharaziha, M.; Fathi, M. A facile one-step strategy for development of a double network fibrous scaffold for nerve tissue engineering. Biofabrication 2017, 9, 025008.
86. Golafshan, N.; Kharaziha, M.; Alehosseini, M. A three-layered hollow tubular scaffold as an enhancement of nerve regeneration potential. Biomed. Mater. 2018, 13, 065005.
87. Li, Q.; Bai, Y.; Jin, T.; Wang, S.; Cui, W.; Stanciulescu, I.; Yang, R.; Nie, H.; Wang, L.; Zhang, X. Bioinspired Engineering of Poly(ethylene glycol) Hydrogels and Natural Protein Fibers for Layered Heart Valve Constructs. ACS Appl. Mater. Interfaces 2017,9, 16524–16535.
88. Yan, S.; Napiwocki, B.; Xu, Y.; Zhang, J.; Zhang, X.; Wang, X.; Crone, W.C.; Li, Q.;Turng, L.S. Wavy small-diameter vascular graft made of eggshell membrane and thermoplastic polyurethane. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 107, 110311
89. Umaraw, P.; Munekata, P.E.; Verma, A.K.; Barba, F.J.; Singh, V.; Kumar, P.; Lorenzo, P. Edible films/coating with tailored properties for active packaging of meat, fish and derived products. Trends Food Sci. Technol. 2020, 98, 10–24.
90. Reza, M.; Mohammad, A.M.; Milad, R.; Mohaddeseh, K.; Amir, M.M.; Ehsan, S.; Sara,H. Physico-mechanical andp structural properties of eggshell membrane gelatin-chitosan blend edible films. Int. J. Biol. Macromol. 2018, 107, 406–412.
91. Li, L.; Xia, N.; Zhang, H.; Li, T.; Zhang, H.; Chi, Y.; Zhang, Y.; Liu, X.; Li, H. Structure and properties of edible packaging film prepared by soy protein isolate-eggshell membrane conjugates loaded with Eugenol. Int. J. Food Eng. 2020, 16, 20200099.
92. Xin, Y.; Li, C.; Liu, J.; Liu, J.; Liu, Y.; He, W.; Gao, Y. Adsorption of heavy metal with modified eggshell membrane and the in situ synthesis of Cu-Ag/you modified eggshell membrane composites. R. Soc. Open Sci. 2018, 5, 180532.
93. Al-Ghouti, M.A.; Khan, M. Eggshell membrane as a novel bio sorbent for remediation of boron from desalinated water. J. Environ. Manag. 2018, 207, 405–416.
94. Mirzaei, S.; Javanbakht, V. Dye removal from aqueous solution by a novel dual cross-linked biocomposite obtained from mucilage of Plantago Psyllium and eggshell membrane. Int. J. Biol. Macromol. 2019, 134, 1187–1204.
95. Parvin, S.; Biswas, B.K.; Rahman, M.A.; Rahman, M.H.; Anik, M.S.; Uddin, M.R. Study on adsorption of Congo red onto chemically modified egg shell membrane. Chemosphere 2019, 236, 124326.
96. Abdelmigid, H.M.; Morsi, M.M.; Hussien, N.A.; Alyamani, A.A.; Al Sufyani, N.M. Comparative Analysis of nanosilver Particles synthesized by different approaches and their antimicrobial efficacy. J. Nanomater. 2021, 2021, 2204776.
97. Abdelmigid, H.M.; Alyamani, A.A.; Hussien, N.A.; Morsi, M.M.; Alhumaidi, A. Integrated Approaches for Adsorption and Incorporation Testing of Green-Synthesized TiO2NPs Mediated by Seed-Priming Technology in Punica granatum L. Agronomy 2022, 12, 1601.
98. Swathi, N.; Sandhiya, D.; Rajeshkumar, S.; Lakshmi, T. Green synthesis of titanium dioxide nanoparticles using Cassia fistula and its antibacterial activity. Int. J. Res. Pharm. Sci. 2019, 10, 856–860.
99. Ahmad, W.; Jaiswal, K.K.; Soni, S. Green synthesis of titanium dioxide (TiO2) nanoparticles by using Mentha arvensis leaves extract and its antimicrobial properties. Inorg. Nano Met. Chem. 2020, 50, 1032–1038.
100. Raja, S.; Ramesh, V.; Thivaharan, V. Green biosynthesis of silver nanoparticles using Calliandra haematocephala leaf extract, their antibacterial activity and hydrogen peroxide sensing capability. Arab. J. Chem. 2017, 10, 253–261.
101. Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 1990, 82, 1107–1112.
102. Allam, R.M.; Al-Abd, A.M.; Khedr, A.; Sharaf, O.A.; Nofal, S.M.; Khalifa, A.E.; Mosli, H.A.; Abdel-Naim, A.B. Fingolimod interrupts the cross talk between estrogen metabolism and sphingolipid metabolism within prostate cancer cells. Toxicol. Lett. 2018, 291, 77–85.
103. Ryszka F., Dobrzański Z., Trziszka T., Dolińska B. (2007): Sposób otrzymywania preparatu wapniowego. Patent PL 212777N; 2012.
104. .Ryszka F., Dolińska B., Jelińska M., Chyra D., Rosak K. (2014): Sposób otrzymywania preparatu wapniowego.Zgłoszenie Patentowe. Patent PL 408725.
105. FP X (2014): Farmakopea Polska, X. Warszawa, Urząd Re- jestracji Produktów Leczniczych, Wyrobów Medycznych i Produktów Biobójczych.
106. Stadelman, W.J. Quality Identification of Shell Eggs. In Egg Science and Technology; Stadelman, W.J.; Cotterill, O.J.; Eds.; AVI: Westport CT, 1977; 29–39
107. https://www.linkedin.com/pulse/10-great-uses-eggshell-powder-derek-tower
108. https:// "https://hyperlink%20%22http//www.healthline.com/nutrition/eggshells-benefits-and-risks%22www.healthline.com/nutrition/eggshells-benefits-and-risks." "https://hyperlink%20%22http//www.healthline.com/nutrition/eggshells-benefits-and risks%22www.healthline.com/nutrition/eggshells-benefits-and-risks." "http://www.healthline.com/nutrition/eggshells-benefits-and-risks"HYPERLINK"https://hyperlink%20%22http//www.healthline.com/nutrition/eggshells-benefits-and-risks%22www.healthline.com/nutrition/eggshells-benefits-and risks."www.healthline.com/nutrition/eggshells-benefits-and-risks.