Author(s): Akshada G. Waghchaure, Dattaprasad N. Vikhe, Ravindra S. Jadhav, Ganesh S. Shinde

Email(s): akshadawaghchaure2@gmail.com

DOI: 10.52711/2349-2988.2022.00010   

Address: Akshada G. Waghchaure*, Dattaprasad N. Vikhe, Ravindra S. Jadhav, Ganesh S. Shinde
Department of Pharmacognosy, Pravara Rural College of Pharmacy,
Pravaranagar, Ahmednagar, Maharashtra -413736.
*Corresponding Author

Published In:   Volume - 14,      Issue - 1,     Year - 2022


ABSTRACT:
A completely unique coronavirus (2019-n Cov) formally reffered to as severe acute respiratory syndromes [SARS Cov 2] appeared in wuhan, china. The coronavirus infectious disease 2019 (covid 19) has speechless like a shock in fully unprepared world. Covid 19 caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS Cov 2). Covid 19 first emerged in December 2019 all in cluster of patients with the pneumonia of unknown cause was recognized in Wuhan, China. In july 2020, SARS Cov2 was affected more than 200 countries. The coronavirus fevered 79% and 50% genomic similarities with severe acute respiratory syndromes coronavirus 2 [SARS Cov 2] and middle east respiratory syndromes coronavirus [MERS Cov 2] respectively. Several drugs have been investigated for their efficacy and safety in the treatment of covid 19 disease like antiviral, antimalerials, antibiotics immunomodulators, anticoagulants.


Cite this article:
Akshada G. Waghchaure, Dattaprasad N. Vikhe, Ravindra S. Jadhav, Ganesh S. Shinde. The ongoing Pharmacotherapy for ministration of Covid 19 disease: A Review. Research Journal of Science and Technology. 2022; 14(1):66-2. doi: 10.52711/2349-2988.2022.00010

Cite(Electronic):
Akshada G. Waghchaure, Dattaprasad N. Vikhe, Ravindra S. Jadhav, Ganesh S. Shinde. The ongoing Pharmacotherapy for ministration of Covid 19 disease: A Review. Research Journal of Science and Technology. 2022; 14(1):66-2. doi: 10.52711/2349-2988.2022.00010   Available on: https://rjstonline.com/AbstractView.aspx?PID=2022-14-1-10


REFERENCES:
1.    J.F. Chan et al,, S.K. Lau, K.K.. To, V.C. Cheng, P.C. Woo, K.Y. Yuen. Middle east respiratory syndrome coronavirus zoonotic betacoronavirus causing SARS – like disease. Clin Microbial Rev,28 (2015),pp.465-522..
2.    N.P. Johnson et al, J. Muller Updating the accounts: global mortality of the 1918-1920 “Spanish” influenza pandemic.105-115.
3.    Wu, Y. Peng, B. Huang, X. Ding, X. Wang, P. Niu, et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China Cell Host Microbe, 27 (2020), pp. 325-329
4.    Y. Yin, R.G. Wunderink MERS, SARS and other coronaviruses as causes of pneumonia Respirology, 23 (2018), pp. 130-137.
5.    C.B. Reusken, B.L. Haagmans, M.A. Muller, C. Gutierrez, G.J. Godeke, B. Meyr, et al. Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological lancet,356-359
6.    Zou L, Ruan F, Huang M, et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Engl J Med. 2020. 10.1056/NEJMc2001737. [PMC free article] [PubMed]
7.    Coronavirus: https://www.who.int/emergencies/mers-cov/en/. Accessed 16 Feb 2020.
8.    World Health Organization. Situation reports. Available at: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/. Accessed 22 Feb 2020.
9.    Coronavirus Outbreak. Available at: https://www.worldometers.info/coronavirus/. Accessed 23 Feb 2020
10.    Richman DD, Whitley RJ, Hayden FG. Clinical Virology, 4th ed. Washington: ASM Press; 2016.
11.    Chan-Yeung M, Xu RH. SARS: epidemiology. Respirology. 2003; 8:S9–14. doi: 10.1046/j.1440-1843.2003.00518.x.
12.    Middle East Respiratory Syndrome Coronavirus. Available at: https://www.who.int/emergencies/mers-cov/en/. Accessed 16 Feb 2020.
13.    Pubchem.ncbi.nim.nih.gov.
14.    Y. Zhou,F .Zhang, D.. Zhao, Cheng, Z. Gao, l2020. Evaluation of the efficacy and safety of IV remdesivir in adult patient with severe pneumonia caused by cov-19 virus infection .htttps//doi.org/10.1186/s13063-020-04352.9
15.    Wang M, Caor, Zhang L, Yang X ,Liu J..Xu M. Remdesvir and chloroquin effectively inhibit the recently emerged novel corona virus (2019-nCov) in vitro.
16.    Williasmson B.N, Feldmann f., Schwarz B. Clinical benefit of remdesivir in rhesus macqes infected with SARS –COV-2. Pizzorno.A..,padey B.’julien T, characterization and treatment Of SARS-COV-2 in nasal and bronchial human airway epithelia.
17.    Geein J., Ohmagaeri, N., Shin D., Compassionate use of remdesivir for patient with severe cov-19.
18.    Furuta Y., Gowen B.B., Takahashi K., Shiraki K., Smee D.F., Barnard D.L. Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antivir Res. 2013 Nov; 100:446–454.
19.    Toyama Chemicals. Summary of Product Characteristics of Avigan.
20.    Madelain V., Nguyen T.H., Olivo A. Ebola virus infection: review of the pharmacokinetic and pharmacodynamic properties of drugs considered for testing in human efficacy trials, Clini Pharmacokinet. 2016 Aug; 55:907–923. doi: 10.1007/s40262-015-0364-1.
21.    Jin Z., Smith L.K., Rajwanshi V.K., Kim B., Deval J. The ambiguous base-pairing and high substrate efficiency of T-705 (favipiravir) ribofuranosyl 5′-triphosphate towards influenza a virus Polymerase PloS One. 2013; 8
22.    Baranovich T., Wong S.S., Armstrong J. 705 (favipiravir) induces lethal mutagenesis in influenza A H1N1 viruses in vitro. J Virol. 2013;87:3741–3751.
23.    Sleeman K., Mishin V.P., Deyde V.M., Furuta Y., Klimov A.I., Gubareva L.V. In vitro antiviral activity of favipiravir (T-705) against drug-resistant influenza and 2009 A(H1N1) viruses. Antimicrob Agents Chemother. 2010;54:2517–2524.
24.    Oestereich L., Lüdtke A., Wurr S., Rieger T., Muñoz-Fontela C., Günther S. Successful treatment of advanced Ebola virus infection with T-705 (favipiravir) in a small animal model. Antivir Res. 2014 May;105:17–21.
25.    Smither S.J., Eastaugh L.S., Steward J.A., Nelson M., Lenk R.P., Lever M.S. Post-exposure efficacy of oral T-705 (Favipiravir) against inhalational Ebola virus infection in a mouse model. Antivir Res. 2014 Apr;104:153–155.
26.    Sissoko D., Laouenan C., Folkesson E. Experimental treatment with favipiravir for ebola virus disease (the JIKI trial): a historically controlled, single-arm proof-of-concept trial in Guinea. PLoS Med. 2016 Mar 1;13
27.    Kerber R., Lorenz E., Duraffour S. Laboratory findings, compassionate use of favipiravir, and outcome in patients with ebola virus disease, Guinea, 2015-A retrospective observational study. J Infect Dis. 2019 Jun 19;220:195–202.
28.    Shannon A., Selisko B., Le N. bioRxiv; 2020 May 15. Favipiravir Strikes the SARS-CoV-2 at its Achilles Heel, the RNA Polymerase.
29.    Furuta Y., Takahashi K., Fukuda Y. In vitro and in vivo activities of anti-influenza virus compound T-705. Antimicrob Agents Chemother. 2002;46:977–981.
30.    Nguyen T.H., Guedj J., Anglaret X. Favipiravir pharmacokinetics in Ebola-Infected patients of the JIKI trial reveals concentrations lower than targeted. PLoS Neglected Trop Dis. 2017 Feb 23;11
31.    Wang M., Cao R., Zhang L. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020 Mar;30:269–271.
32.    Chen C., Zhang Y., Huang J. medRxiv; 2020. Favipiravir versus Arbidol for COVID-19: A Randomized Clinical Trial. 2020 Apr 15.
33.    Arabi YM, Deeb AM, Al-Hameed F, et al. Macrolides in critically ill patients with Middle East respiratory syndrome. Int J Infect Dis. 2019;81:184–190. doi:10.1016/j.ijid.2019.01.04
34.    Gautret P, Lagier J-C, Parola P, et al. Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: a pilot observational study. Travel Med Infect Dis. 2020;34:101663. doi:10.1016/j.tmaid.2020.101663
35.    Magagnoli J, Narendran S, Pereira F, et al. Outcomes of hydroxychloroquine usage in United States veterans hospitalized with COVID-19. Med. 2020. doi:10.1016/j.medj.2020.06.001
36.    Lagier J-C, Million M, Gautret P, et al. Outcomes of 3737 COVID-19 patients treated with hydroxychloroquine/azithromycin and other regimens in Marseille, France: a retrospective analysis. Travel Med Infect. 2020; 36:101791. doi:10.1016/j.tmaid.2020.101791
37.    Sekhavati E, Jafari F, SeyedAlinaghi S, et al. NSafety and effectiveness of azithromycin in patients with COVID-19: an open-label randomized trial. Int J Antimicrob Agents. 2020; 56:106143. doi:10.1016/j.ijantimicag.2020.106143
38.    Sarma P, Kaur H, Kumar H, et al. Virological and clinical cure in COVID-19 patients treated with hydroxychloroquine: a systematic review and meta-analysis. J Med Virol. 2020; 92:776–785. doi:10.1002/jmv.25898
39.    Cavalcanti AB, Zampieri FG, Rosa RG, et al. Hydroxychloroquine with or without azithromycin in to-moderate Covid-19. N Engl J Med. 2020. Doi: 10.1056/NEJMoa2019014
40.    Million M, Lagier J-C, Gautret P, et al. Early treatment of COVID-19 patients with hydroxychloroquine and azithromycin: a retrospective analysis of 1061 cases in Marseille, France. Travel Med Infect Wang Y, Cui R, Li G, et al. Teicoplanin inhibits Ebola pseudovirus infection in cell culture. Antiviral Res. 2016; 125:1–7. doi:10.1016/j.antiviral.2015.11.003
41.    Wang Y, Cui R, Li G, et al. Teicoplanin inhibits Ebola pseudovirus infection in cell culture. Antiviral Res. 2016; 125:1–7. doi:10.1016/j.antiviral.2015.11.003
42.    Zhou N, Pan T, Zhang J, et al. Glycopeptide antibiotics potently inhibit cathepsin L in the late endosome/lysosome and block the entry of ebola virus, Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus (SARS-CoV). J Biol Chem. 2016; 291:9218–9232. doi:10.1074/jbc.M116.716100
43.    Baron SA, Devaux C, Colson P, Raoult D, Rolain J-M. Teicoplanin: an alternative drug for the tratment of COVID-19? Int J Antimicrob Agents. 2020;55:105944.doi:10.1016/j.ijantimicag.2020.105944
44.    Wang Z-H, Shu C, Ran X, Xie C-H, Zhang L. Critically Ill patients with coronavirus disease 2019 in a designated ICU: clinical Features and Predictors for mortality. Risk Manag Healthc Policy. 2020; 13:833–845. doi:10.2147/RMHP.S263095 Dis. 2020; 35:101738. doi:10.1016/j.tmaid.2020.
45.    Liu, C. et al. 2020. Research and Development of Therapeutic Agents and Vaccines for COVID-19 and Related Human Coronavirus Diseases. ACS Central Science 6, 315-331.
46.    Guo, Y.R. et al. 2020. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil Med Res 7, 11.
47.    Yin, Y. & Wunderink, R.G. 2018. MERS, SARS and other coronaviruses as causes of pneumonia. Respirology 23, 130-137.
48.    Cui, J. et al. 2019. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 17, 181-192.
49.    Zhu, N. et al. 2020. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 382, 727-733.
50.    Fehr, A.R. & Perlman, S. 2015. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol 1282, 1-23.
Zhou, P. et al. 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270-273.
51.    Hoffmann, M. et al. 2020. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell
52.    Li, G. et al. 2020. Coronavirus infections and immune responses. J Med Virol 92, 424-432
53.    Salim, B., and Noureddine, M. (2020). Identification of compounds from nigella sativa as new potential inhibitors of 2019 novel coronasvirus (Covid-19): molecular docking study. chemRxiv:10.26434/chemrxiv.12055716.v1.
54.    lshatwi, A. A. (2014). Bioactivity-guided identification to delineate the immunomodulatory effects of methanolic extract of Nigella sativa seed on human peripheral blood mononuclear cells. Chin. J. Integr. Med. [Epub ahead of print]. Doi: 10.1007/s11655-013-1534-3
55.    Koshak, A. E., Yousif, N. M., Fiebich, B. L., Koshak, E. A., and Heinrich, M. (2018). Comparative immunomodulatory activity of Nigella sativa L. preparations on proinflammatory mediators: a focus on asthma. Front. Pharmacol. 9, 1075. Doi: 10.3389/fphar.
56.    Liang, S., Li, X., Ma, X., Li, A., Wang, Y., Reaney, M. J. T., et al. (2019). A flaxseed heteropolysaccharide stimulates immune responses and inhibits hepatitis B virus. Int. J. Biol. Macromol. 136, 230–240. doi:10.1016/j.ijbiomac.2019.06.076.
57.    Palla, A. H., Khan, N. A., Bashir, S., Ur-Rehman, N., Iqbal, J., and Gilani, A. H. (2015). Pharmacological basis for the medicinal use of Linum usitatissimum (Flaxseed) in infectious and non-infectious diarrhea. J. Ethnopharmacol. 160, 61–68. doi:10.1016/j.jep.2014.11.030
58.    Kasote, D. M., Zanwar, A. A., Devkar, S. T., Hegde, M. V., and Deshmukh, K. K. (2012). Immunomodulatory activity of ether insoluble phenolic components of n-butanol fraction (EPC-BF) of flaxseed in rat. Asian Pac. J. Trop. Biomed. 2 (2), S623–S626. doi:10.1016/S2221-1691(12)60285-8
59.    Balkrishna, A., Pokhrel, S., Singh, J., and Varshney, A. (2020). Withanone from withania somnifera may inhibit novel coronavirus (COVID-19) entry by disrupting interactions between viral S-protein receptor binding domain and host ACE2 receptor. Virol. J. [Epub ahead of print]. doi:10.21203/RS.3.RS-17806/V1.
60.    Grover, A., Agrawal, V., Shandilya, A., Bisaria, V. S., and Sundar, D. (2011). Non-nucleosidic inhibition of Herpes simplex virus DNA polymerase: mechanistic insights into the anti-herpetic mode of action of herbal drug withaferin A. BMC Bioinf. 12 (Suppl 13), S22. doi:10.1186/1471-2105-12-S13-S22
61.    Chandran, U., and Patwardhan, B. (2017). Network ethnopharmacological evaluation of the immunomodulatory activity of Withania somnifera. J. Ethnopharmacol. 197, 250–256. doi:10.1016/j.jep.2016.07.080

Recomonded Articles:

Author(s): V. Madhan Chakkaravarthy, C. Raghunathan

DOI:         Access: Open Access Read More

Author(s): S. Deepa, K. Kanimozhi , A. Panneerselvam

DOI:         Access: Open Access Read More

Author(s): S. D. Mankar, Chaitrali Kale, Jangam Kanchan

DOI: 10.5958/2349-2988.2019.00032.9         Access: Open Access Read More

Author(s): S. D. Mankar, R. S. Jadhav, Kapil Gaikwad

DOI: 10.5958/2349-2988.2020.00021.2         Access: Open Access Read More

Author(s): Priyanka K. Shinde, Dattaprasad N. Vikhe, Ravindra S. Jadhav, Ganesh S. Shinde

DOI: 10.52711/2349-2988.2021.00043         Access: Open Access Read More

Author(s): Ali Adel Dawood, Zeyad Thanoon Al-Rrassam, Mahmood Abduljabar Altobje

DOI: 10.52711/2349-2988.2022.00003         Access: Closed Access Read More

Author(s): Akshada G. Waghchaure, Dattaprasad N. Vikhe, Ravindra S. Jadhav, Ganesh S. Shinde

DOI: 10.52711/2349-2988.2022.00010         Access: Closed Access Read More

Research Journal of Science and Technology (RJST) is an international, peer-reviewed journal, devoted to science and technology...... Read more >>>

RNI: Not Available                     
DOI: 10.5958/2349-2988 


Recent Articles




Tags