Author(s): Tej Bhadresh Patel, Anuradha Prajapati, Sachin Narkhede, Shailesh Luhar, Mihir Thakor

Email(s): tejpatel037@gmail.com

DOI: 10.52711/2349-2988.2025.00042   

Address: Tej Bhadresh Patel¹*, Anuradha Prajapati, Sachin Narkhede, Shailesh Luhar, Mihir Thakor
Smt. B.N.B Swaminarayan Pharmacy College, Salvav - Vapi, Gujarat, 396191.
*Corresponding Author

Published In:   Volume - 17,      Issue - 4,     Year - 2025


ABSTRACT:
Artificial intelligence (AI) has revolutionized healthcare, enabling advancements in diagnostics and drug development. However, its application in drug regulation is still developing, with varying levels of adoption across global regulatory agencies. This review explores the current landscape of AI in drug regulation, focusing on its implementation and impact within these organizations. Findings indicate that many agencies are actively adopting AI strategies to enhance data-driven decision-making and optimize regulatory processes. AI is increasingly utilized for safety monitoring, workflow improvements, and, to a lesser extent, exploratory research in regulatory science. These efforts are expanding AI’s role in streamlining medicine regulation, marking a significant shift toward more efficient and evidence-based regulatory systems. Artificial intelligence (AI) is transforming regulatory affairs in drug development by streamlining processes, enhancing decision-making, and ensuring compliance with evolving global standards. Current applications include automated data analysis for regulatory submissions, real-time monitoring of compliance requirements, and predictive modeling to anticipate regulatory challenges. AI tools are being utilized to optimize clinical trial designs, improve pharmacovigilance through adverse event detection, and accelerate document preparation for regulatory approvals. These advancements reduce time-to-market and enhance efficiency while maintaining high standards of safety and efficacy. Looking forward, AI is poised to revolutionize regulatory affairs through advanced natural language processing for automated dossier generation, integration with real-world evidence for adaptive regulatory pathways, and personalized medicine approaches tailored to specific patient populations. However, challenges such as data privacy, ethical considerations, and the need for harmonized global regulations must be addressed to fully realize AI’s potential.


Cite this article:
Tej Bhadresh Patel, Anuradha Prajapati, Sachin Narkhede, Shailesh Luhar, Mihir Thakor. Al-Driven Regulatory Affairs: Current Applications and Future Directions in Drug Development. Research Journal of Science and Technology. 2025; 17(4):305-2. doi: 10.52711/2349-2988.2025.00042

Cite(Electronic):
Tej Bhadresh Patel, Anuradha Prajapati, Sachin Narkhede, Shailesh Luhar, Mihir Thakor. Al-Driven Regulatory Affairs: Current Applications and Future Directions in Drug Development. Research Journal of Science and Technology. 2025; 17(4):305-2. doi: 10.52711/2349-2988.2025.00042   Available on: https://rjstonline.com/AbstractView.aspx?PID=2025-17-4-7


REFERENCES:
1.    Ruddaraju LK, Pammi SVN, Pallela PNVK, Padavala VS, Kolapalli VRM. Antibiotic potentiation and anti-cancer competence through bio-mediated ZnO nanoparticles. Mater Sci Eng C. 2019; 103:109756.
2.    Nguyen NH, Pham QT, Luong TN, Le HK, Vo VG. Potential antidiabetic activity of extracts and isolated compound from Adenosma bracteosum (Bonati). Biomolecules. 2020 29; 10(2): 201.
3.    Van Giau V, an SSA, Hulme JP. Mitochondrial therapeutic interventions in Alzheimer’s disease. J NEUROL SCI. 2018; 395:62–70.
4.    Gupta M, Tomar RS, Kaushik S, Mishra RK, Sharma D. Effective antimicrobial activity of green ZnO nanoparticles of CATHARANTHUS ROSEUS. FRONT MICROBIOL. 2018; 9:1–13.
5.    Ramsden J. Nanotechnology: an introduction. William Andrew; 2016 May 11.
6.    Albrecht MA, Evans CW, Raston CL. Green chemistry and the health implications of nanoparticles. GREEN CHEM. 2006;8(5):417–32. 
7.    Herlekar M, Barve S, Kumar R. Plant-mediated green synthesis of iron nanoparticles. J NANOPART. 2014; 2014:140614. 
8.    Simonis F, Schilthuizen S. Nanotechnology: Innovation Opportunities for Tomorrow’s defence. TNO Science & Industry Future Technology Center: The Netherlands; 2006.
9.    Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011; 13(10):2638–50. 
10.    Periasamy G, Karim A, Gibrelibanos M, Gebremedhin G. Nutmeg (Myristica Fragrans Houtt.) oils. In: Essential Oils in Food Preservation, Flavor and Safety. Elsevier; 2016.  607–16.
11.    Suresh J, Pradheesh G, Alexramani V, Sundrarajan M, Hong SI. Green synthesis and characterization of zinc oxide nanoparticle using insulin plant (Costus pictus D. Don) and investigation of its antimicrobial as well as anticancer activities. Advances in Natural Sciences: Nanoscience and Nanotechnology. 2018; 9(1): 015008.
12.    El-Borady OM, Ayat MS, Shabrawy MA, Millet P. Green synthesis of gold nanoparticles using Parsley leaves extract and their applications as an alternative catalytic, antioxidant, anticancer, and antibacterial agents. Adv Powder Technol. 2020;31(10):4390-400.
13.    Rabiee N, Bagherzadeh M, Kiani M, Ghadiri AM. Rosmarinus Officinalis directed palladium nanoparticle synthesis: Investigation of potential antibacterial, anti-fungal, and Mizoroki-Heck catalytic activities. ADV Powder Technol.2020;1402–11
14.    Zaman SU, Ali A, Asif M, Mashrai A, Khanam H. Green synthesis of ZnO NPs using Bacillus Subtilis and their catalytic performance in the one-pot synthesis of steroidal thiophenes. EUR Chem Bull. 2014; 9:939–45.
15.    Moghaddam AB, Moniri M, Azizi S, Abdul Rahim R, Ariff AB, Saad WZ, et al. Biosynthesis of ZnO NPs by a new PICHIA KUDRIAVZEVII yeast strain and evaluation of their antimicrobial and antioxidant activities. Molecules. 2017; 22:872.
16.    Sanaeimehr Z, Javadi I, Namvar F. Antiangiogenic and antiapoptotic effects of green-synthesized zinc oxide nanoparticles using Sargassum muticum algae extraction. Cancer nano. 2018; 9:1-6.
17.    Wahba NS, Shaban SF, Kattaia AA, Kandeel SA. Efficacy of zinc oxide nanoparticles in attenuating pancreatic damage in a rat model of streptozotocin-induced diabetes. Ultrastruct Pathol. 2016; 40:358–73.
18.    Mishra PK, Mishra H, Ekielski A, Talegaonkar S, Vaidya B. Zinc oxide nanoparticles: A promising nanomaterial for biomedical applications. Drug Discov Today. 2017; 22:1825–34.
19.    Nazarizadeh A, Asri-Rezaie S. Comparative study of antidiabetic activity and oxidative stress induced by zinc oxide nanoparticles and zinc sulfate in diabetic rats. Pharmscitech. 2016; 17:834–43.
20.    Umrani RD, Paknikar KM. Zinc oxide nanoparticles show antidiabetic activity in streptozotocin-induced Type 1 and 2 diabetic rats. NANOMEDICINE. 2014; 9:89–104.
21.    El-Gharbawy RM, Emara AM, Abu-Risha SES. Zinc oxide nanoparticles and a standard antidiabetic drug restore the function and structure of beta cells in Type-2 diabetes. Biomed Pharmacother. 2016; 84:810–20
22.    Shanker K, Naradala J, Mohan GK, Kumar GS, Pravallika PL. A sub-acute oral toxicity analysis and comparative IN VIVO anti-diabetic activity of zinc oxide, cerium oxide, silver nanoparticles, and Momordica charantia in Streptozotocin-induced diabetic Wistar rats. RSC ADV. 2017; 7:37158–67.
23.    Rajakumar G, Thiruvengadam M, Mydhili G, Gomathi T, Chung IM. Green approach for synthesis of zinc oxide nanoparticles from Andrographis paniculata leaf extract and evaluation of their antioxidant, anti-diabetic, and anti-inflammatory activities. Bioprocess Biosyst Eng. 2018; 41:21–30.
24.    Amiri A, Dehkordi RAF, Heidarnejad MS, Dehkordi MJ. Effect of zinc oxide nanoparticles and thiamine for the management of diabetes in alloxan-induced mice: A stereological and biochemical study. BIOL Trace Elem Res. 2018; 181:258–64.
25.    Asri-Rezaei S, Dalir-Naghadeh B, Nazarizadeh A, Noori-Sabzikar Z. Comparative study of cardio-protective effects of zinc oxide nanoparticles and zinc sulfate in streptozotocin-induced diabetic rats. J Trace Elem Med Biol. 2017; 42:129–41.
26.    Bayrami A, Parvinroo S, Habibi-Yangjeh A, Rahim Pouran S. Bio-extract-mediated ZnO nanoparticles: Microwave-assisted synthesis, characterization, and antidiabetic activity evaluation. Artif Cells Nanomed Biotechnol. 2018; 46:730–9.
27.    Hussein J, El Naggar ME, Latif YA, Medhat D, El Bana M, Refaat E, et al. Solvent-free and one-pot synthesis of silver and zinc nanoparticles: Activity toward cell membrane components and insulin signaling pathways in experimental diabetes. Colloids Surf B BIOINTERFACES. 2018; 170:76–84.
28.    Bayrami A, Ghorbani E, Pouran SR, Habibi-Yangjeh A, Khataee A, Bayrami M. Enriched zinc oxide nanoparticles by NASTURTIUM officinale leaf extract: Joint ultrasound-microwave-facilitated synthesis, characterization, and implementation for diabetes control and bacterial inhibition. Ultrason Sonochem. 2019; 58:104613.
29.    Umrani RD, Paknikar KM. Jasada Bhasma, a zinc-based Ayurvedic preparation: Contemporary evidence of antidiabetic activity inspires the development of nanomedicine. Evid Based Complement Alternat Med. 2015; 2015:193156.
30.    Alkaladi A, Abdelazim AM, Afifi M. Antidiabetic activity of zinc oxide and silver nanoparticles on streptozotocin-induced diabetic rats. INT J MOL SCI. 2014; 15:2015–23.
31.    Umrani RD, Paknikar KM. Zinc oxide nanoparticles show antidiabetic activity in streptozotocin-induced Type 1 and 2 diabetic rats. Nanomedicine. 2014; 9:89–104.
32.    Röder PV, Wu B, Liu Y, Han W. Pancreatic regulation of glucose homeostasis. Exp Mol Med. 2016;48:e219.
33.    Gerber PA, Rutter GA. The role of oxidative stress and hypoxia in pancreatic beta-cell dysfunction in diabetes mellitus. Antioxid Redox Signal. 2017; 26:501–18.
34.    Asani SC, Umrani RD, Paknikar KM. IN VITRO studies on the pleiotropic antidiabetic effects of zinc oxide nanoparticles. Nanomedicine. 2016; 11:1671–87.
35.    Bernsmeier C, Dill MT, Provenzano A, Makowska Z, Krol I, Muscogiuri G, Duong FH. Hepatic Notch1 deletion predisposes to diabetes and steatosis via glucose-6-phosphatase and perilipin-5 upregulation. Lab Investig. 2016; 96:972–80.
36.    Burchell A, Cain DI. Rat hepatic microsomal glucose-6-phosphatase protein levels are increased in streptozotocin-induced diabetes. Diabetologia. 1985; 28:852–6.
37.    Huynh K, Martins RN, Meikle PJ. Lipidomic profiles in diabetes and dementia. J Alzheimer's Dis. 2017; 59:433–44.
38.    Krauss RM. Lipids and lipoproteins in patients with type 2 diabetes. Diabetes Care. 2004; 27:1496–504.
39.    Asri-Rezaei S, Dalir-Naghadeh B, Nazarizadeh A, Noori-Sabzikar Z. Comparative study of cardio-protective effects of zinc oxide nanoparticles and zinc sulfate in streptozotocin-induced diabetic rats. J Trace Elem Med Biol. 2017; 42:129–41.
40.    Dahlman I, Ryden M, Arner P. Family history of diabetes is associated with enhanced adipose lipolysis: evidence for the implication of epigenetic factors. diabetes Metab. 2018; 44:155–9.
41.    Serup AK, Alsted TJ, Jordy AB, Schjerling P, Holm C, Kiens B. Partial disruption of lipolysis increases postexercise insulin sensitivity in skeletal muscle despite accumulation of Dag. Diabetes. 2016; 65:2932–42.
42.    Herder C, Dalmas E, Boni-Schnetzler M, Donath MY. The IL-1 pathway in type 2 diabetes and cardiovascular complications. TRENDS ENDOCRINOL METAB. 2015; 26:551–63.
43.    Silva LR, Girard D. Human eosinophils are direct targets to nanoparticles: Zinc oxide nanoparticles (ZnO) delay apoptosis and increase the production of the proinflammatory cytokines IL-1β and IL-8. Toxicol Lett. 2016; 259:11–20.
44.    Wu Y, Potempa LA, El Kebir D, Filep JG. C-reactive protein and inflammation: Conformational changes affect function. BIOL CHEM. 2015; 396:1181–97.
45.    Moutachakkir M, Lamrani Hanchi A, Baraou A, Boukhira A, Chellak S. Immunoanalytical characteristics of C-reactive protein and high sensitivity C-reactive protein. Ann Biol Clin. 2017; 75:225–9.
46.    Du MR, Ju GX, Li NS, Jiang JL. Role of asymmetrical dimethylarginine in diabetic microvascular complications. J Cardiovasc Pharmacol. 2016; 68:322–6.
47.    Bashary R, Vyas M, Nayak SK, Suttee A, Verma S, Narang R, Khatik GL. An insight of alpha-amylase inhibitors as a valuable tool in the management of type 2 diabetes mellitus. Current diabetes reviews. 2020;16(2):117-36.
48.    Jhong CH, Riyaphan J, Lin SH, Chia YC, Weng CF. Screening alpha-glucosidase and alpha-amylase inhibitors from natural compounds by molecular docking in silico. BIOFACTORS. 2015; 41:242–51.
49.    Lee MY, Choi DS, Lee MK, Lee HW, Park TS, Kim DM, et al. Comparison of acarbose and voglibose in diabetes patients who are inadequately controlled with basal insulin treatment: Randomized, parallel, open-label, active-controlled study. J Korean Med Sci. 2014; 29:90–7.
50.    Kitture R, Chordiya K, Gaware S, Ghosh S, More PA, Kulkarni P, Kale SN. ZnO nanoparticles-red sandalwood conjugate: A promising anti-diabetic agent. J Nanosci Nanotechnol. 2015; 15:4046–51.
51.    Shaik F, Kumar A. ZnO nanoparticles and their acarbose-capped nanohybrids as inhibitors for human salivary amylase. IET Nanobiotechnol. 2017; 11:329–35.
52.    Walker WH. Testosterone signaling and the regulation of spermatogenesis. Spermatogenesis. 2011;1(2):116-20.
53.    El-Behery EI, El-Naseery NI, El-Ghazali HM, Elewa YH, Mahdy EA, El-Hady E, Konsowa MM. The efficacy of chronic zinc oxide nanoparticles using on testicular damage in the streptozotocin-induced diabetic rat model. Acta Histochemica. 2019;121(1):84-93.
54.    Wang J, Tang C, Wang Q, Su J, Ni T, Yang W, et al. NRF1 coordinates with DNA methylation to regulate spermatogenesis. Faseb J. 2017; 31:4959–70.
55.    Heo J, Lim J, Lee S, Jeong J, Kang H, Kim Y, et al. Sirt1 regulates DNA methylation and differentiation potential of embryonic stem cells by antagonizing Dnmt3l. CELL REP. 2017;18:1930–45.
56.    Jangir RN, Jain GC. Diabetes mellitus induced impairment of male reproductive functions: A review. Curr Diabetes Rev. 2014; 10:147–57.

Recomonded Articles:

Author(s): Shashikant R Pattan, Nachiket S Dighe, H V Shinde, Deepak S Musmade, Mangesh B Hole, Vinayak M Gaware

DOI:         Access: Open Access Read More

Author(s): Monago, C.C, Gozie G.C., Joshua P.E.

DOI:         Access: Open Access Read More

Author(s): Hiren M. Marvaniya, Divyesh J. Vanparia, Renu Chauhan, Dhrubo Jyoti Sen

DOI:         Access: Open Access Read More

Author(s): AK Dwivedi, VK Patle, OP Vyas

DOI:         Access: Open Access Read More

Author(s): Anand Murti Mishra

DOI:         Access: Open Access Read More

Author(s): Shashikant R Pattan, Nachiket S Dighe*, Deepak S Musmade, Manisha S Kedar, Smita K Parjane,Priyanka P Gadhave , Manjusha S Sanap

DOI:         Access: Open Access Read More

Author(s): Rahul Gedam, Sanskriti Sharma

DOI:         Access: Open Access Read More

Author(s): AK Dwivedi, VK Patle, OP Vyas

DOI:         Access: Open Access Read More

Author(s): Asane Varad Arun, Pangavhane Namrata Balasaheb, Jori Vikas Babasaheb, Jadhav Dipak Kailas, Kale Rushikesh Adinath, Nalawade Dipak Dadasaheb

DOI: 10.52711/2349-2988.2024.00034         Access: Open Access Read More

Author(s): Bhushan S. Mahajan, Bhupendra Sing P. Mahale, Amol R. Pawar, Vikas V. Patil, Pankaj S. Patil, Jayesh Songire

DOI: 10.52711/2349-2988.2024.00020         Access: Open Access Read More

Author(s): Sayanti Roy, Zinkar Das, Rajdeep Chowdhury, Biswarup Neogi, Sunit Ghosh Majumdar

DOI:         Access: Open Access Read More

Author(s): Kuldeep Kumar Verma, Vivek Babele

DOI: 10.5958/2349-2988.2020.00014.5         Access: Open Access Read More

Author(s): Alekhya. Lam, Priyanka Lukalapu, Lidiya Kusuma Latha, Chegudi, Madhav. Vemireddy

DOI: 10.52711/2349-2988.2024.00035         Access: Open Access Read More

Author(s): Ganesh Bharskar, Pratik Malvade

DOI: 10.52711/2349-2988.2022.00041         Access: Open Access Read More

Author(s): Pawar Kanchan, Sudrik Vaibhav, Datir Bhumika, Manchare Shital

DOI: 10.52711/2349-2988.2024.00037         Access: Open Access Read More

Author(s): Ambika Nand Jha, Varsha Ratan Gaikwad

DOI: 10.52711/2349-2988.2025.00011         Access: Closed Access Read More

Research Journal of Science and Technology (RJST) is an international, peer-reviewed journal, devoted to science and technology...... Read more >>>

RNI: Not Available                     
DOI: 10.5958/2349-2988 


Recent Articles




Tags