Author(s): Reshma Sawant, Kopparam Manjunath, Siddalingappa Bhagawati, Rashmi Surve, Neha Shivathaya

Email(s): reshmasawant02.rs@ gmail.com

DOI: 10.52711/2349-2988.2025.00041   

Address: Reshma Sawant1*, Kopparam Manjunath2, Siddalingappa Bhagawati2, Rashmi Surve1, Neha Shivathaya1
1Department of Pharmaceutics, Rani Chennamma College of Pharmacy, Bauxite Road, Vaibhav Nagar, Belagavi, 590010 Karnataka, India.
2Department of Pharmaceutics, Sree Siddaganga College of Pharmacy, Gokula Extension, Tumakuru, 572103, Karnataka, India.
*Corresponding Author

Published In:   Volume - 17,      Issue - 4,     Year - 2025


ABSTRACT:
The therapeutic potential and biocompatibility of zinc oxide nanoparticles (ZnO NPs) have made them a promising nanomaterial for treating diabetes. This study examines various green synthesis techniques for producing ZnO nanoparticles, with a focus on their application in diabetes treatment. Natural extracts, plants, microbes, and other green synthesis methods are gaining popularity due to their low environmental impact and competitive pricing. ZnO NPs' size, shape, surface charge, and biocompatibility are only a few of the physicochemical aspects and distinctive features contributing to their potency in treating diabetes. The review includes a comprehensive examination of the synthesis processes, aiming on the function of environmentally friendly precursors and their effect on the final characteristics of ZnO NPs. The potential of ZnO NPs as an antidiabetic is also highlighted; specifically, it is clarified how these nanoparticles might help reduce hyperglycemia, insulin resistance, and oxidative stress, which are important factors in maintaining healthy blood sugar levels. ZnO NPs' ability to improve treatment results and decrease medication doses when used with standard antidiabetic medicines is being investigated. Critical assessments of the safety and toxicity of ZnO NPs are provided, along with responses to concerns and recommendations for mitigating such effects. The review also identifies promising areas for further study and development in the realm of green-synthesized ZnO NPs for the treatment of diabetes. The increasing understanding of ZnO NPs and the development of green synthesis methods bode well for their potential impact in the creation of novel and effective treatment approaches for diabetes management.


Cite this article:
Reshma Sawant, Kopparam Manjunath, Siddalingappa Bhagawati, Rashmi Surve, Neha Shivathaya. Biogenic Zinc Oxide Nanoparticles as a Sustainable Strategy for Diabetes Management. Research Journal of Science and Technology. 2025; 17(4):297-4. doi: 10.52711/2349-2988.2025.00041

Cite(Electronic):
Reshma Sawant, Kopparam Manjunath, Siddalingappa Bhagawati, Rashmi Surve, Neha Shivathaya. Biogenic Zinc Oxide Nanoparticles as a Sustainable Strategy for Diabetes Management. Research Journal of Science and Technology. 2025; 17(4):297-4. doi: 10.52711/2349-2988.2025.00041   Available on: https://rjstonline.com/AbstractView.aspx?PID=2025-17-4-6


REFERENCES:
1.    Ruddaraju LK, Pammi SVN, Pallela PNVK, Padavala VS, Kolapalli VRM. Antibiotic potentiation and anti-cancer competence through bio-mediated ZnO nanoparticles. Mater Sci Eng C. 2019; 103:109756.
2.    Nguyen NH, Pham QT, Luong TN, Le HK, Vo VG. Potential antidiabetic activity of extracts and isolated compound from Adenosma bracteosum (Bonati). Biomolecules. 2020 29; 10(2): 201.
3.    Van Giau V, an SSA, Hulme JP. Mitochondrial therapeutic interventions in Alzheimer’s disease. J NEUROL SCI. 2018; 395:62–70.
4.    Gupta M, Tomar RS, Kaushik S, Mishra RK, Sharma D. Effective antimicrobial activity of green ZnO nanoparticles of CATHARANTHUS ROSEUS. FRONT MICROBIOL. 2018; 9:1–13.
5.    Ramsden J. Nanotechnology: an introduction. William Andrew; 2016 May 11.
6.    Albrecht MA, Evans CW, Raston CL. Green chemistry and the health implications of nanoparticles. GREEN CHEM. 2006;8(5):417–32. 
7.    Herlekar M, Barve S, Kumar R. Plant-mediated green synthesis of iron nanoparticles. J NANOPART. 2014; 2014:140614. 
8.    Simonis F, Schilthuizen S. Nanotechnology: Innovation Opportunities for Tomorrow’s defence. TNO Science & Industry Future Technology Center: The Netherlands; 2006.
9.    Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011; 13(10):2638–50. 
10.    Periasamy G, Karim A, Gibrelibanos M, Gebremedhin G. Nutmeg (Myristica Fragrans Houtt.) oils. In: Essential Oils in Food Preservation, Flavor and Safety. Elsevier; 2016.  607–16.
11.    Suresh J, Pradheesh G, Alexramani V, Sundrarajan M, Hong SI. Green synthesis and characterization of zinc oxide nanoparticle using insulin plant (Costus pictus D. Don) and investigation of its antimicrobial as well as anticancer activities. Advances in Natural Sciences: Nanoscience and Nanotechnology. 2018; 9(1): 015008.
12.    El-Borady OM, Ayat MS, Shabrawy MA, Millet P. Green synthesis of gold nanoparticles using Parsley leaves extract and their applications as an alternative catalytic, antioxidant, anticancer, and antibacterial agents. Adv Powder Technol. 2020;31(10):4390-400.
13.    Rabiee N, Bagherzadeh M, Kiani M, Ghadiri AM. Rosmarinus Officinalis directed palladium nanoparticle synthesis: Investigation of potential antibacterial, anti-fungal, and Mizoroki-Heck catalytic activities. ADV Powder Technol.2020;1402–11
14.    Zaman SU, Ali A, Asif M, Mashrai A, Khanam H. Green synthesis of ZnO NPs using Bacillus Subtilis and their catalytic performance in the one-pot synthesis of steroidal thiophenes. EUR Chem Bull. 2014; 9:939–45.
15.    Moghaddam AB, Moniri M, Azizi S, Abdul Rahim R, Ariff AB, Saad WZ, et al. Biosynthesis of ZnO NPs by a new PICHIA KUDRIAVZEVII yeast strain and evaluation of their antimicrobial and antioxidant activities. Molecules. 2017; 22:872.
16.    Sanaeimehr Z, Javadi I, Namvar F. Antiangiogenic and antiapoptotic effects of green-synthesized zinc oxide nanoparticles using Sargassum muticum algae extraction. Cancer nano. 2018; 9:1-6.
17.    Wahba NS, Shaban SF, Kattaia AA, Kandeel SA. Efficacy of zinc oxide nanoparticles in attenuating pancreatic damage in a rat model of streptozotocin-induced diabetes. Ultrastruct Pathol. 2016; 40:358–73.
18.    Mishra PK, Mishra H, Ekielski A, Talegaonkar S, Vaidya B. Zinc oxide nanoparticles: A promising nanomaterial for biomedical applications. Drug Discov Today. 2017; 22:1825–34.
19.    Nazarizadeh A, Asri-Rezaie S. Comparative study of antidiabetic activity and oxidative stress induced by zinc oxide nanoparticles and zinc sulfate in diabetic rats. Pharmscitech. 2016; 17:834–43.
20.    Umrani RD, Paknikar KM. Zinc oxide nanoparticles show antidiabetic activity in streptozotocin-induced Type 1 and 2 diabetic rats. NANOMEDICINE. 2014; 9:89–104.
21.    El-Gharbawy RM, Emara AM, Abu-Risha SES. Zinc oxide nanoparticles and a standard antidiabetic drug restore the function and structure of beta cells in Type-2 diabetes. Biomed Pharmacother. 2016; 84:810–20
22.    Shanker K, Naradala J, Mohan GK, Kumar GS, Pravallika PL. A sub-acute oral toxicity analysis and comparative IN VIVO anti-diabetic activity of zinc oxide, cerium oxide, silver nanoparticles, and Momordica charantia in Streptozotocin-induced diabetic Wistar rats. RSC ADV. 2017; 7:37158–67.
23.    Rajakumar G, Thiruvengadam M, Mydhili G, Gomathi T, Chung IM. Green approach for synthesis of zinc oxide nanoparticles from Andrographis paniculata leaf extract and evaluation of their antioxidant, anti-diabetic, and anti-inflammatory activities. Bioprocess Biosyst Eng. 2018; 41:21–30.
24.    Amiri A, Dehkordi RAF, Heidarnejad MS, Dehkordi MJ. Effect of zinc oxide nanoparticles and thiamine for the management of diabetes in alloxan-induced mice: A stereological and biochemical study. BIOL Trace Elem Res. 2018; 181:258–64.
25.    Asri-Rezaei S, Dalir-Naghadeh B, Nazarizadeh A, Noori-Sabzikar Z. Comparative study of cardio-protective effects of zinc oxide nanoparticles and zinc sulfate in streptozotocin-induced diabetic rats. J Trace Elem Med Biol. 2017; 42:129–41.
26.    Bayrami A, Parvinroo S, Habibi-Yangjeh A, Rahim Pouran S. Bio-extract-mediated ZnO nanoparticles: Microwave-assisted synthesis, characterization, and antidiabetic activity evaluation. Artif Cells Nanomed Biotechnol. 2018; 46:730–9.
27.    Hussein J, El Naggar ME, Latif YA, Medhat D, El Bana M, Refaat E, et al. Solvent-free and one-pot synthesis of silver and zinc nanoparticles: Activity toward cell membrane components and insulin signaling pathways in experimental diabetes. Colloids Surf B BIOINTERFACES. 2018; 170:76–84.
28.    Bayrami A, Ghorbani E, Pouran SR, Habibi-Yangjeh A, Khataee A, Bayrami M. Enriched zinc oxide nanoparticles by NASTURTIUM officinale leaf extract: Joint ultrasound-microwave-facilitated synthesis, characterization, and implementation for diabetes control and bacterial inhibition. Ultrason Sonochem. 2019; 58:104613.
29.    Umrani RD, Paknikar KM. Jasada Bhasma, a zinc-based Ayurvedic preparation: Contemporary evidence of antidiabetic activity inspires the development of nanomedicine. Evid Based Complement Alternat Med. 2015; 2015:193156.
30.    Alkaladi A, Abdelazim AM, Afifi M. Antidiabetic activity of zinc oxide and silver nanoparticles on streptozotocin-induced diabetic rats. INT J MOL SCI. 2014; 15:2015–23.
31.    Umrani RD, Paknikar KM. Zinc oxide nanoparticles show antidiabetic activity in streptozotocin-induced Type 1 and 2 diabetic rats. Nanomedicine. 2014; 9:89–104.
32.    Röder PV, Wu B, Liu Y, Han W. Pancreatic regulation of glucose homeostasis. Exp Mol Med. 2016;48:e219.
33.    Gerber PA, Rutter GA. The role of oxidative stress and hypoxia in pancreatic beta-cell dysfunction in diabetes mellitus. Antioxid Redox Signal. 2017; 26:501–18.
34.    Asani SC, Umrani RD, Paknikar KM. IN VITRO studies on the pleiotropic antidiabetic effects of zinc oxide nanoparticles. Nanomedicine. 2016; 11:1671–87.
35.    Bernsmeier C, Dill MT, Provenzano A, Makowska Z, Krol I, Muscogiuri G, Duong FH. Hepatic Notch1 deletion predisposes to diabetes and steatosis via glucose-6-phosphatase and perilipin-5 upregulation. Lab Investig. 2016; 96:972–80.
36.    Burchell A, Cain DI. Rat hepatic microsomal glucose-6-phosphatase protein levels are increased in streptozotocin-induced diabetes. Diabetologia. 1985; 28:852–6.
37.    Huynh K, Martins RN, Meikle PJ. Lipidomic profiles in diabetes and dementia. J Alzheimer's Dis. 2017; 59:433–44.
38.    Krauss RM. Lipids and lipoproteins in patients with type 2 diabetes. Diabetes Care. 2004; 27:1496–504.
39.    Asri-Rezaei S, Dalir-Naghadeh B, Nazarizadeh A, Noori-Sabzikar Z. Comparative study of cardio-protective effects of zinc oxide nanoparticles and zinc sulfate in streptozotocin-induced diabetic rats. J Trace Elem Med Biol. 2017; 42:129–41.
40.    Dahlman I, Ryden M, Arner P. Family history of diabetes is associated with enhanced adipose lipolysis: evidence for the implication of epigenetic factors. diabetes Metab. 2018; 44:155–9.
41.    Serup AK, Alsted TJ, Jordy AB, Schjerling P, Holm C, Kiens B. Partial disruption of lipolysis increases postexercise insulin sensitivity in skeletal muscle despite accumulation of Dag. Diabetes. 2016; 65:2932–42.
42.    Herder C, Dalmas E, Boni-Schnetzler M, Donath MY. The IL-1 pathway in type 2 diabetes and cardiovascular complications. TRENDS ENDOCRINOL METAB. 2015; 26:551–63.
43.    Silva LR, Girard D. Human eosinophils are direct targets to nanoparticles: Zinc oxide nanoparticles (ZnO) delay apoptosis and increase the production of the proinflammatory cytokines IL-1β and IL-8. Toxicol Lett. 2016; 259:11–20.
44.    Wu Y, Potempa LA, El Kebir D, Filep JG. C-reactive protein and inflammation: Conformational changes affect function. BIOL CHEM. 2015; 396:1181–97.
45.    Moutachakkir M, Lamrani Hanchi A, Baraou A, Boukhira A, Chellak S. Immunoanalytical characteristics of C-reactive protein and high sensitivity C-reactive protein. Ann Biol Clin. 2017; 75:225–9.
46.    Du MR, Ju GX, Li NS, Jiang JL. Role of asymmetrical dimethylarginine in diabetic microvascular complications. J Cardiovasc Pharmacol. 2016; 68:322–6.
47.    Bashary R, Vyas M, Nayak SK, Suttee A, Verma S, Narang R, Khatik GL. An insight of alpha-amylase inhibitors as a valuable tool in the management of type 2 diabetes mellitus. Current diabetes reviews. 2020;16(2):117-36.
48.    Jhong CH, Riyaphan J, Lin SH, Chia YC, Weng CF. Screening alpha-glucosidase and alpha-amylase inhibitors from natural compounds by molecular docking in silico. BIOFACTORS. 2015; 41:242–51.
49.    Lee MY, Choi DS, Lee MK, Lee HW, Park TS, Kim DM, et al. Comparison of acarbose and voglibose in diabetes patients who are inadequately controlled with basal insulin treatment: Randomized, parallel, open-label, active-controlled study. J Korean Med Sci. 2014; 29:90–7.
50.    Kitture R, Chordiya K, Gaware S, Ghosh S, More PA, Kulkarni P, Kale SN. ZnO nanoparticles-red sandalwood conjugate: A promising anti-diabetic agent. J Nanosci Nanotechnol. 2015; 15:4046–51.
51.    Shaik F, Kumar A. ZnO nanoparticles and their acarbose-capped nanohybrids as inhibitors for human salivary amylase. IET Nanobiotechnol. 2017; 11:329–35.
52.    Walker WH. Testosterone signaling and the regulation of spermatogenesis. Spermatogenesis. 2011;1(2):116-20.
53.    El-Behery EI, El-Naseery NI, El-Ghazali HM, Elewa YH, Mahdy EA, El-Hady E, Konsowa MM. The efficacy of chronic zinc oxide nanoparticles using on testicular damage in the streptozotocin-induced diabetic rat model. Acta Histochemica. 2019;121(1):84-93.
54.    Wang J, Tang C, Wang Q, Su J, Ni T, Yang W, et al. NRF1 coordinates with DNA methylation to regulate spermatogenesis. Faseb J. 2017; 31:4959–70.
55.    Heo J, Lim J, Lee S, Jeong J, Kang H, Kim Y, et al. Sirt1 regulates DNA methylation and differentiation potential of embryonic stem cells by antagonizing Dnmt3l. CELL REP. 2017;18:1930–45.
56.    Jangir RN, Jain GC. Diabetes mellitus induced impairment of male reproductive functions: A review. Curr Diabetes Rev. 2014; 10:147–57.


Recomonded Articles:

Author(s): Leena Sahu, Amit Roy, Trilochan Satapathy

DOI:         Access: Open Access Read More

Author(s): Premjit S Nannaware, Suhas S. Siddheshwar, M.H. Kolhe

DOI: 10.52711/2349-2988.2021.00019         Access: Open Access Read More

Author(s): Bhupendra M. Mahale, Akshata M. Girase, Maheshwari M. Mahale

DOI: 10.52711/2349-2988.2024.00047         Access: Open Access Read More

Author(s): S. Sharma, Vikas Kumar Jain, Himanshu Shekhar Kar

DOI:         Access: Open Access Read More

Author(s): Alpana Sharma

DOI: 10.5958/2349-2988.2017.00018.3         Access: Open Access Read More

Author(s): A.K. Meena, Kiran Sharma, Vikas Jain, Bhavana Pal, Ajit K., Uttam Singh, R. Singh , M.M. Rao

DOI:         Access: Open Access Read More

Author(s): Harshal Patil, Pawan Meshram, Jyotsna Waghmare

DOI:         Access: Open Access Read More

Author(s): Monago, C.C, Gozie G.C., Joshua P.E.

DOI:         Access: Open Access Read More

Author(s): Rajendra K. Jangde

DOI: 10.5958/2349-2988.2015.00026.1         Access: Open Access Read More

Author(s): A. Mahesh, P. Durga Prasad, C.S.K. Raju, P. Prakash, S.V.K. Varma

DOI: 10.5958/2349-2988.2018.00012.8         Access: Open Access Read More

Author(s): Prerana H. Salodkar, Nikhil A. Maske, Dipali H. Chaudhari

DOI: 10.5958/2349-2988.2015.00032.7         Access: Open Access Read More

Author(s): Archana R. Pawar, Priya S. Rao, Dattaprasad N. Vikhe

DOI: 10.52711/2349-2988.2021.00029         Access: Open Access Read More

Research Journal of Science and Technology (RJST) is an international, peer-reviewed journal, devoted to science and technology...... Read more >>>

RNI: Not Available                     
DOI: 10.5958/2349-2988 


Recent Articles




Tags