Author(s): Vrushant Oza, Bhoomi Patel, Anuradha P. Prajapati, Sachin B. Narkhede, Shailesh Luhar, Kantilal Narkhede, Neha Desai, Bijal Yadav

Email(s): anuradha@ssgsalvav.in

DOI: 10.52711/2349-2988.2025.00036   

Address: Vrushant Oza, Bhoomi Patel, Anuradha P. Prajapati, Sachin B. Narkhede, Shailesh Luhar, Kantilal Narkhede, Neha Desai, Bijal Yadav
Department of Pharmaceutics, Smt. B.N.B. Swaminarayan Pharmacy College, Gujarat Technological University, Salvav, Vapi, Gujarat, India, 396191.
*Corresponding Author

Published In:   Volume - 17,      Issue - 4,     Year - 2025


ABSTRACT:
Background: Open-angle glaucoma affects approximately 40 million people globally and poses a significant threat to vision. This study introduces a novel method for treating open-angle glaucoma using the medication Ripasudil, targeting the trabecular meshwork, a key factor in glaucoma progression. The delivery system, a niosomal in situ gel, is designed to be superior to traditional eye drop formulations. Results: The formulation has a particle size of 160 nm and an encapsulation efficiency of 88.5%, meeting therapeutic standards for glaucoma treatment. The optimization process involved a central composite design with 13 batches, focusing on optimizing drug concentration and surfactant ratio. Drug release kinetics showed a 98% release in 12hours, providing a sustained therapeutic impact. Conclusions: This innovative treatment has the potential to significantly improve the lives of millions affected by glaucoma worldwide. The potential benefits include enhanced bioavailability of Ripasudil, improved patient adherence through sustained release, and increased treatment efficacy for glaucoma.


Cite this article:
Vrushant Oza, Bhoomi Patel, Anuradha P. Prajapati, Sachin B. Narkhede, Shailesh Luhar, Kantilal Narkhede, Neha Desai, Bijal Yadav. Development and Evaluation of an Ophthalmic Niosomal in situ gel loaded with Ripasudil. Research Journal of Science and Technology. 2025; 17(4):257-4. doi: 10.52711/2349-2988.2025.00036

Cite(Electronic):
Vrushant Oza, Bhoomi Patel, Anuradha P. Prajapati, Sachin B. Narkhede, Shailesh Luhar, Kantilal Narkhede, Neha Desai, Bijal Yadav. Development and Evaluation of an Ophthalmic Niosomal in situ gel loaded with Ripasudil. Research Journal of Science and Technology. 2025; 17(4):257-4. doi: 10.52711/2349-2988.2025.00036   Available on: https://rjstonline.com/AbstractView.aspx?PID=2025-17-4-1


REFERENCES: 
1.    Mohan EC, Laxmi MN, Nappinnai M. Preparation and evaluation of in-situ-gels for ocular drug delivery. J Pharm Res. 2009; 2(6): 1089-94.
2.    Shastri H, Prajapati ST, Patel LD. Studies on in-situ hydrogel: A smart way for safe and sustained ocular drug delivery. Indian J Pharm Sci. 2010; 2(2): 116-20.
3.    Bansal A, Sneha M, Tiwari A. Novel ocular dosage form in the treatment of glaucoma. The Pharma Res. 2009; 1:72-81.
4.    Yeh J, Bedinghaus T, McLendon K. Rational use of the fixed combination of dorzolamide-timolol in the management of raised intraocular pressure and glaucoma. Clin Ophthalmol. 2008; 2(2): 389-99.
5.    Manjappa AS, Nanjawade BK, Manvi FV. Sustained ophthalmic in situ gel of ketorolac tromethamine: Rheology and in vivo studies. Drug Dev Res. 2009; 70: 417-24.
6.    Srividya B, Cardoza RM, Amin PD. Sustained ophthalmic delivery of ofloxacin from a pH-triggered in situ gelling system. J Control Release. 2001; 73: 205-11.
7.    Kugalur GP, Palanichamy S, Palanisamy PK. Formulation and evaluation of ketorolac ocular pH-triggered in-situ gel. Int J Drug Dev Res. 2010; 2(2): 379-87.
8.    Prajapati AP, Kanzaria JH, Luhar SV, Narkhede SB. Formulation, development and evaluation of nasal in situ gel of pregabalin. Int J Pharm Sci Nanotechnol. 2021; 14(5): 5612-23.
9.    Pandey A, Kumar A, Singh S. Development and optimization of levobunolol hydrochloride in-situ gel for glaucoma treatment. Int J Pharm Biol Arch. 2010; 1(2): 134-9.
10.    Verma L, Chauhan J, Maheshwari R. Development of phase change solutions for ophthalmic drug delivery based on ion-activated and pH-induced polymers. Int J Pharm Prof Res. 2010;1(2):137-44.
11.    Kulkarni SV, Patil VS, Desai BS. Effect of a single drop of latanoprost ophthalmic gel on intraocular pressure in the treatment of glaucoma. Int J Pharm Sci. 2010;2(1):429-35.
12.    Singh V, Dubey M, Kumar V. In vitro and in vivo evaluation of stimuli-sensitive hydrogel for ophthalmic drug delivery. Indian J Pharm Educ Res. 2010; 44(4):380-5.
13.    Reeshanteni B, Abdullah K, Rajermani T. Formulation of in-situ gelling system for ophthalmic delivery of erythromycin. Int J Students Res Technol Manag. 2017; 5(1):1-8.
14.    Prajapati AP, Narkhede SB, Kanzaria JH. A review on in situ gel therapy for epilepsy via nasal route. J Pharmacogn Phytochem. 2019;8(3):4809-14.
15.    Makwana SB, Patel VA, Parmar SJ. Development and characterization of in-situ gel for ophthalmic formulation containing ciprofloxacin hydrochloride. Results Pharm Sci. 2016;6(2):1-6. Bharath S. Sustained ophthalmic delivery of ofloxacin from an ion-activated in situ gelling system. Pak J Pharm Sci. 2009; 22(2).
16.    Aggarwal D, Kaur I. Improved pharmacodynamics of timolol maleate from a mucoadhesive niosomal ophthalmic drug delivery system. Int J Pharm. 2005; 290:155.
17.    Doijad M, Manvi FV, Damle AV. Design and evaluation of novel carbopol-based ocular sol-gel phase transition systems of fluconazole in the management of fungal keratitis. Indian J Pharm Sci. 2004; July-August:567.
18.    Gokulgandhi MR, Modi M, Parikh JR. In situ gel systems for ocular drug delivery: A review. Drug Deliv Technol. 2007; 7:30.
19.    Gandhi MR, Parikh JR, Barot M, Modi MD. A pH-triggered in situ forming ophthalmic drug delivery system for tropicamide. Drug Deliv Technol. 2007;7(5):44.
20.    Lin HR, Sung KC. Carbopol/Pluronic phase change solutions for ophthalmic drug delivery. J Control Release. 2000; 69:379.
21.    International Conference on Harmonisation (ICH). ICH Q1A: Stability testing of new drug substances and products. Proceedings of the International Conference on Harmonisation, Geneva. 1993.
22.    Balasubramanian J, Shrikant, Pandit J. In vitro and in vivo evaluation of the gelrite gellan gum-based ocular delivery system for indomethacin. Acta Pharm. 2003; 53:251.
23.    Jain CP, Vyas SP, Dixit VK. Niosomal system for delivery of Rifampicin to lymphatics. Indian J Pharm Sci. 2006;68(5):575.
24.    Khandare JN, Bobade HJ, Uppal R. Preparation and evaluation of nimesulide niosomes for topical application. Indian Drugs. 2001;38(4):197.
25.    Aqil M. Advances in ophthalmic drug delivery systems: Part I. Hamdard Univ, New Delhi. 2005.
26.    Mullaicharam AR, Murthy RSR. Formulation, optimization, and stability of Rifampicin niosomes. Indian Pharmacist. 2004; 4:54.
27.    Charoo NA, Kohli K, Ali A. Preparation of in situ forming ophthalmic gels of ciprofloxacin hydrochloride for the treatment of bacterial conjunctivitis: In vitro and in vivo studies. Indian J Pharm Sci. 2007;92(2):407.
28.    Pandit JK, Bharathi D, Srinatha A, Ridhurkar DN, Singh S. Long-acting ophthalmic formulation of indomethacin: Evaluation of alginate gel systems. Indian J Pharm Sci. 2007;69(1):37.
29.    Prabhu P, Koland M, Vijaynarayan K, Harish NM, Ganesh D, Charyulu RN, Satyanarayana D. Preparation and evaluation of niosomes of brimonidine tartrate as an ocular drug delivery system. J Pharm Res Healthc. 2010;2(4):293-301.
30.    Maiti S. Antiglaucomatic niosomal system: Recent trend in ocular delivery research. Int J Pharm Sci. 2010;2.
31.    Saettone M. Progress and problems in ophthalmic drug delivery. Bus Briefing Pharmatech. 2002;1-6.
32.    Mansour S, Guinedi AS, Nahed D. Preparation and evaluation of reverse phase evaporation and multilamellar niosomes as ophthalmic carriers of acetazolamide. Int J Pharm. 2005; 306:71.
33.    Yoshioka T, Florence AT. Preparation and properties of vesicles (niosomes) of sorbitan monoesters (Span 20, 40, 60, and 80) and a sorbitan trimester (Span 85). Int J Pharm. 1994; 105(1).
34.    Varghese V, Vitta P, Bakshi V, Agarwal S, Pandey S. Niosomes of primaquine: Effect of sorbitan esters (Spans) on the vesicular characteristics. Indian Drugs. 2004; 41(2).
35.    Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug delivery. AAPS J. 2010; 12(3): 348-60. https://doi.org/10.1208/s12248-010-9183-3
36.    Rodrigues GA, Lutz D, Shen J. Topical drug delivery to the posterior segment of the eye: Addressing the challenge of preclinical to clinical translation. Pharm Res. 2018; 35(12): 245. https://doi.org/10.1007/s11095-018-2519-x.
37.    Morrison PWJ, Khutoryanskiy VV. Advances in ophthalmic drug delivery. Ther Deliv. 2014;5(12):1297-315. https://doi.org/10.4155/tde.14.75.
38.    Bachu R, Chowdhury P, Al-Saedi Z, Karla P, Boddu S. Ocular drug delivery barriers—role of nanocarriers in the treatment of anterior segment ocular diseases. Pharmaceutics. 2018;10(1):28. https://doi.org/10.3390/pharmaceutics10010028.
39.    Flaxman SR, Bourne RRA, Resnikoff S. Global causes of blindness and distance vision impairment 1990–2020: A systematic review and meta-analysis. Lancet Glob Health. 2017;5(12):e1221-34. https://doi.org/10.1016/S2214-109X(17)30393-5.
40.    Jain D, Carvalho E, Banerjee R. Biodegradable hybrid polymeric membranes for ocular drug delivery. Acta Biomater. 2010;6(4):1370-9. https://doi.org/10.1016/j.actbio.2009.09.020.
41.    Silva B, Lima MA, Neves JD, Fonseca FL, Borges MT. Development of in situ gel-forming systems for sustained ophthalmic drug delivery: Rheology, in vitro release, and in vivo studies. Int J Pharm. 2014;474(1-2):67-74. https://doi.org/10.1016/j.ijpharm.2014.08.017.
42.    Lallemand F, Felt-Baeyens O, Daull P, Buggage R, Lambert G. Cyclosporine A delivery to the eye: A pharmaceutical challenge. Eur J Pharm Biopharm. 2003;56(3):307-18. https://doi.org/10.1016/S0939-6411(03)00133-9.
43.    Bourges JL, Bloquel C, Thomas A, Froussart F, Bochot A, Azan F, et al. Intraocular implants for extended drug delivery: Therapeutic applications. Adv Drug Deliv Rev. 2006;58(11):1182-202. https://doi.org/10.1016/j.addr.2006.07.026.
44.    Hamal PK, Karki R, Sharma SK, Lamichhane M, Ghimire MR, Neupane YR, et al. Stimuli-responsive in situ gelling ophthalmic drug delivery systems: Present scenario and future perspectives. AAPS PharmSciTech. 2021; 22(5): 168. https://doi.org/10.1208/s12249-021-02009-4.
45.    Rathore MS, Nema RK. Review on ocular inserts. Int J PharmTech Res. 2009;1(2):164-9.
46.    Dharmasena A, Abbott J. Nanomedicine in ophthalmology. Nanosci Nanotechnol Lett. 2011; 3(6): 815-26. https://doi.org/10.1166/nnl.2011.1206.
47.    Loftsson T, Hreinsdóttir D, Stefánsson E. Cyclodextrins in eye drop formulations: Enhanced topical delivery of corticosteroids to the eye. Acta Ophthalmol Scand. 2007;85(6):598-602. https://doi.org/10.1111/j.1600-0420.2007.00921.x.
48.    Di Colo G, Burgalassi S, Chetoni P, Fiaschi MP, Zambito Y. Gel-forming erodible inserts for ocular controlled delivery of ofloxacin. Int J Pharm. 2001;215(1-2):101-11. https://doi.org/10.1016/S0378-5173(01)00607-5.
49.    Venkatesh M, Rao S, Naidu R, Nayak B. Design and characterization of mucoadhesive in situ gels of flurbiprofen for treatment of glaucoma. Indian J Pharm Sci. 2011; 73(1):54-8. https://doi.org/10.4103/0250-474X.89753.
50.    Ludwig A. The use of mucoadhesive polymers in ocular drug delivery. Adv Drug Deliv Rev. 2005; 57(11): 1595-639. https://doi.org/10.1016/j.addr.2005.07.005.
51.    Sultana Y, Jain R, Aqil M, Ali A. Review of ocular drug delivery. Curr Drug Deliv. 2006; 3(2): 207-17. https://doi.org/10.2174/156720106776359047.
52.    Lang JC. Ocular drug delivery: Conventional ocular formulations. Adv Drug Deliv Rev. 1995; 16(1): 39-43. https://doi.org/10.1016/0169-409X(95)00019-B.
53.    Kuno N, Fujii S. Recent advances in ocular drug delivery systems. Polymers (Basel). 2011; 3(1): 193-221. https://doi.org/10.3390/polym3010193.

Recomonded Articles:

Author(s): M. Surendra, T. Venkateswara Rao

DOI:         Access: Open Access Read More

Author(s): Debjit Bhowmik, K.P. Sampath Kumar, Lokesh Deb

DOI: 10.5958/2349-2988.2016.00012.7         Access: Closed Access Read More

Author(s): Namrta Choudhary, M.B. Siddiqui , Shazia, K.M. Abdul Raoof

DOI:         Access: Open Access Read More

Author(s): S. D. Mankar, Anjali Dama, M. S. Bhosale, Dr. S. S. Sidhheshwar

DOI: 10.5958/2349-2988.2020.00011.X         Access: Open Access Read More

Author(s): Debjit Bhowmik, Rishab Bhanot, Darsh Gautam, Parshuram Rai, K. P. Sampath Kumar

DOI: 10.5958/2349-2988.2018.00022.0         Access: Open Access Read More

Author(s): Varsha N. Tambe, Priyanka S. Jadhav, Avinash N. Tambe

DOI: 10.5958/2349-2988.2020.00047.9         Access: Open Access Read More

Author(s): Sirisha Y. , Venkateswara Rao T.

DOI:         Access: Open Access Read More

Author(s): Kunal M. Agavane, Sonal B. Ombase

DOI: 10.52711/2349-2988.2022.00011         Access: Open Access Read More

Author(s): Bhashpitha Naredla, Usharani Sagarla, Prasanthi. D

DOI: 10.52711/2349-2988.2023.00039         Access: Open Access Read More

Author(s): Bharat Bava, Kruti Sharma, Vikas Yadav

DOI: 10.52711/2349-2988.2024.00009         Access: Open Access Read More

Author(s): Vrushant Oza, Bhoomi Patel, Anuradha P. Prajapati, Sachin B. Narkhede, Shailesh Luhar, Kantilal Narkhede, Neha Desai, Bijal Yadav

DOI: 10.52711/2349-2988.2025.00036         Access: Closed Access Read More

Author(s): Maheshwari M. Mahale, Bhagyashri R. Mali, Kiran S. Borse

DOI: 10.52711/2349-2988.2025.00047         Access: Closed Access Read More

Research Journal of Science and Technology (RJST) is an international, peer-reviewed journal, devoted to science and technology...... Read more >>>

RNI: Not Available                     
DOI: 10.5958/2349-2988 


Recent Articles




Tags