Author(s): Kavita Krashna Moorti, Akanksha Tripathi, R.P. Kumhar

Email(s): kavita96seth@gmail.com , tripathidiksha01@gmail.com , rpk1972ssi@gmail.com

DOI: 10.52711/2349-2988.2026.00003   

Address: Kavita Krashna Moorti*, Akanksha Tripathi, R.P. Kumhar
School of Studies in Physics and Research Centre, Maharaja Chhatrasal Bundelkhand University, Chhatarpur (M.P.), India.
*Corresponding Author

Published In:   Volume - 18,      Issue - 1,     Year - 2026


ABSTRACT:
This study explores how TiO2 nanoparticles influence the structural, thermal, and electrochemical characteristics of PVA–NH4SCN-based gel polymer electrolytes. The materials were fabricated using the solution casting method and examined through XRD, DSC, EIS, and LSV analyses to assess their suitability for energy storage devices. XRD analysis revealed that the incorporation of TiO2 increases the amorphous phase of the polymer matrix, which favors ion mobility. DSC measurements confirmed that TiO2 enhances the thermal stability of the electrolyte films compared to the undoped system. EIS results showed a marked improvement in ionic conductivity, rising from ~10?4 S/cm for the pristine film to ~10?³ S/cm with TiO2 addition. Transference number studies indicated that the most conductive sample possessed an ionic transport number of 0.96. LSV further demonstrated a widened electrochemical stability window upon nanofiller inclusion. Collectively, these findings demonstrate that TiO2 addition simultaneously improves structural, thermal, and electrochemical performance, highlighting the potential of these nanocomposite gel electrolytes for next-generation energy storage applications.


Cite this article:
Kavita Krashna Moorti, Akanksha Tripathi, R.P. Kumhar. Effect of TiO₂ Nanofillers on the Structural, Thermal and Conductivity Characteristics of PVA–NH₄SCN Gel Polymer Electrolytes for Advanced Electrochemical Devices. Research Journal of Science and Technology. 2026; 18(1):17-4. doi: 10.52711/2349-2988.2026.00003

Cite(Electronic):
Kavita Krashna Moorti, Akanksha Tripathi, R.P. Kumhar. Effect of TiO₂ Nanofillers on the Structural, Thermal and Conductivity Characteristics of PVA–NH₄SCN Gel Polymer Electrolytes for Advanced Electrochemical Devices. Research Journal of Science and Technology. 2026; 18(1):17-4. doi: 10.52711/2349-2988.2026.00003   Available on: https://rjstonline.com/AbstractView.aspx?PID=2026-18-1-3


REFERENCES:
1.    Ravi M, Kumar KK, Mohan VM, Rao VN. Effect of nano TiO2 filler on the structural and electrical properties of PVP-based polymer electrolyte films. Polymer testing. 2014; 33:152-60. doi.org/10.1016/j.polymertesting.2013.12.002
2.    Agrawal SL, Rai N, Natarajan TS, Chand N. Electrical characterization of PVA-based nanocomposite electrolyte nanofibre mats doped with a multiwalled carbon nanotube. Ionics. 2013; 19(1):145-54. 10.1007/s11581-012-0713-0
3.    Rai N, Singh CP, Ranjta L, Yahya MZ. XRD, DSC, and dielectric studies of MWNT-doped polymer electrolytes for supercapacitor application. Journal of Electronic Materials. 2023; 52(7):4269-78. doi.org/10.1007/s11664-022-10201-z
4.    Cazan C, Enesca A, Andronic L. Synergic effect of TiO2 filler on the mechanical properties of polymer nanocomposites. Polymers. 2021; 13(12):2017. doi.org/10.3390/polym13122017
5.    Choudhary S, Sengwa RJ. Effects of different inorganic nanoparticles on the structural, dielectric and ion transportation properties of polymers blend based nanocomposite solid polymer electrolytes. Electrochimica Acta. 2017; 247:924-41. doi.org/10.1016/j.electacta.2017.07.051
6.    Singh CP, Shukla PK, Agrawal SL. Ion transport studies in PVA: NH4CH3COO gel polymer electrolytes. High Performance Polymers. 2020; 32(2):208-19. doi.org/10.1177/0954008319898242
7.    Alsaad A, Al Dairy AR, Ahmad A, Qattan IA, Al Fawares S, Al-Bataineh Q. Synthesis and characterization of polymeric (PMMA-PVA) hybrid thin films doped with TiO2 nanoparticles using dip-coating technique. Crystals. 2021;11(2):99. doi.org/10.3390/cryst11020099
8.    Herrington TM, Staveley LA. A comparative study of the electrical conductivity of solid ammonium chloride and other ammonium salts. Journal of Physics and Chemistry of Solids. 1964;25(9):921-30. doi.org/10.1016/0022-3697(64)90029-0
9.    Saeed MA, Abdullah OG. Effect of high ammonium salt concentration and temperature on the structure, morphology, and ionic conductivity of proton-conductor solid polymer electrolytes based PVA. Membranes. 2020 Sep 28;10(10):262. doi.org/10.3390/membranes10100262
10.    Agrawal SL, Kumhar RP. Preliminary study on blend based mixed ion-electron conductor-(PVA: PVK): CH3COONH4: EC system. International Journal of Materials Science and Applications. 2014;3(4):129-136.
11.    Bdewi SF, Abdullah OG, Aziz BK, Mutar AA. Synthesis, structural and optical characterization of MgO nanocrystalline embedded in PVA matrix. Journal of Inorganic and Organometallic Polymers and Materials. 2016;26(2):326-34. doi.org/10.1007/s10904-015-0321-3
12.    Zagorskaya SA, Tretinnikov ON. Infrared spectra and structure of solid polymer electrolytes based on poly (vinyl alcohol) and lithium halides. Polymer Science, Series A. 2019;61(1):21-8. 10.1134/S0965545X19010115
13.    Abdullah OG, Salman YA, Saleem SA. Electrical conductivity and dielectric characteristics of in situ prepared PVA/HgS nanocomposite films. Journal of Materials Science: Materials in Electronics. 2016;27(4):3591-8. doi.org/10.1007/s10854-015-4196-4
14.    Hodge RM, Edward GH, Simon GP. Water absorption and states of water in semicrystalline poly (vinyl alcohol) films. Polymer. 1996;37(8):1371-6. doi.org/10.1016/0032-3861(96)81134-7
15.    Polu AR, Kumar R. Ionic conductivity and discharge characteristic studies of PVA-Mg (CH3COO) 2 solid polymer electrolytes. International Journal of Polymeric Materials. 2013;62(2):76-80. doi: 10.1080/00914037.2012.664211
16.    Al-Hakimi AN, Asnag GM, Alminderej F, Alhagri IA, Al-Hazmy SM, Qahtan TF. Enhancing the structural, optical, thermal, and electrical properties of PVA filled with mixed nanoparticles (TiO2/Cu). Crystals. 2023;13(1):135.  doi.org/10.3390/cryst13010135
17.    Xiao M, Du BX. Review of high thermal conductivity polymer dielectrics for electrical insulation. High Voltage. 2016;1(1):34-42.  https://doi.org/10.1049/hve.2016.0008
18.    Sebak MA, Qahtan TF, Asnag GM, Abdallah EM. The role of TiO2 nanoparticles in the structural, thermal and electrical properties and antibacterial activity of PEO/PVP blend for energy storage and antimicrobial application. Journal of Inorganic and Organometallic Polymers and Materials. 2022;32(12):4715-28. doi.org/10.1007/s10904-022-02440-8
19.    Jacob MM, Prabaharan SR, Radhakrishna S. Effect of PEO addition on the electrolytic and thermal properties of PVDF-LiClO4 polymer electrolytes. Solid State Ionics. 1997;104(3-4):267-76. doi.org/10.1016/S0167-2738(97)00422-0
20.    Rajendran S, Mahendran O, Kannan R. Ionic conductivity studies in composite solid polymer electrolytes based on methylmethacrylate. Journal of Physics and Chemistry of Solids. 2002;63(2):303-7. doi.org/10.1016/S0022-3697(01)00144-5
21.    Malathi J, Kumaravadivel M, Brahmanandhan GM, Hema M, Baskaran R, Selvasekarapandian S. Structural, thermal and electrical properties of PVA–LiCF3SO3 polymer electrolyte. Journal of Non-Crystalline Solids. 2010;356(43):2277-81. doi.org/10.1016/j.jnoncrysol.2010.08.011
22.    Hemalatha R, Alagar M, Selvasekarapandian S, Sundaresan B, Moniha V, Boopathi G, Selvin PC. Preparation and characterization of proton-conducting polymer electrolyte based on PVA, amino acid proline, and NH4Cl and its applications to electrochemical devices. Ionics. 2019;25(1):141-54. doi.org/10.1007/s11581-018-2564-9
23.    Brza MA, B. Aziz S, Anuar H, Dannoun EM, Ali F, Abdulwahid RT, Al-Zangana S, Kadir MF. The study of EDLC device with high electrochemical performance fabricated from proton ion conducting PVA-based polymer composite electrolytes plasticized with glycerol. Polymers. 2020;12(9):1896. doi.org/10.3390/polym12091896
24.    Kufian MZ, Aziz MF, Shukur MF, Rahim AS, Ariffin NE, Shuhaimi NE, Majid SR, Yahya R, Arof AK. PMMA–LiBOB gel electrolyte for application in lithium-ion batteries. Solid State Ionics. 2012; 208:36-42. doi.org/10.1016/j.ssi.2011.11.032
25.    Murhakar, G.H. and Raut, A.R., 2014. Thermal Study of Modified Polyvinyl Alcohol Conjugates and Doped Modified Polyvinyl Alcohol Conjugates. Asian Journal of Research in Chemistry, 7(11), pp.925-928.
26.    Chand N, Rai N, Agrawal SL, Patel SK. Morphology, thermal, electrical, and electrochemical stability of nano aluminium-oxide-filled polyvinyl alcohol composite gel electrolyte. Bulletin of Materials Science. 2011;34(7):1297-304. doi.org/10.1007/s12034-011-0318-7

Recomonded Articles:

Author(s): Karunakar Shukla, PK Dubey

DOI:         Access: Open Access Read More

Author(s): Leena Sahu, Amit Roy, Trilochan Satapathy

DOI:         Access: Open Access Read More

Author(s): Alpana Sharma

DOI: 10.5958/2349-2988.2017.00018.3         Access: Open Access Read More

Author(s): Harshal Patil, Pawan Meshram, Jyotsna Waghmare

DOI:         Access: Open Access Read More

Author(s): Satyanarayana Thodeti, . S. Sudhakar Reddy, Srikanth Vemula

DOI: 10.5958/2349-2988.2018.00007.4         Access: Open Access Read More

Author(s): Hassan T. Abdulsahib, Abdalamir H. Taobi, Salah Sh. Hashim

DOI: 10.5958/2349-2988.2015.00007.8         Access: Open Access Read More

Author(s): A. Mahesh, P. Durga Prasad, C.S.K. Raju, P. Prakash, S.V.K. Varma

DOI: 10.5958/2349-2988.2018.00012.8         Access: Open Access Read More

Author(s): Prerana H. Salodkar, Nikhil A. Maske, Dipali H. Chaudhari

DOI: 10.5958/2349-2988.2015.00032.7         Access: Open Access Read More

Author(s): Pravin A. Dhakite, B. B. Gogte, B. W. Phate

DOI:         Access: Open Access Read More

Author(s): K. Venkateswara Raju, C.S.K. Raju, B. Mamata, M.C. Raju

DOI: 10.5958/2349-2988.2017.00097.3         Access: Open Access Read More

Author(s): Vidhi Sunil Jajoo, Amol V. Sawale

DOI: 10.52711/2349-2988.2024.00014         Access: Open Access Read More

Author(s): Naresh N. Sarkar, Kishor G. Rewatkar, Vivek M. Nanoti,Nishant T. Tayade

DOI: 0.5958/2349-2988.2018.00003.7         Access: Open Access Read More

Research Journal of Science and Technology (RJST) is an international, peer-reviewed journal, devoted to science and technology...... Read more >>>

RNI: Not Available                     
DOI: 10.5958/2349-2988 


Recent Articles




Tags