ABSTRACT:
ABSTRACT:
This review article aims to present the overall nanorobotics current trends and advances in development in cancer treatment. Nanorobotics is primarily used as the ability to find and destroy cancer cells. In addition it is a significant impact in medicine, nanotechnology has also been shown to be useful in early diagnosis and treatment. Nanorobotics has the potential to increase the selectivity and efficiency of chemical, physical and biological processes kill cancer cells while minimizing toxicity to non-cancerous cells. Main focus on the application of nanorobotics in the diagnosis and treatment of some diseases such as cancer, heart disease, diabetes, kidney disease, etc. Nanorobotics are performing tasks such as locomotion, information, signaling, information processing and nanoscale intelligence. This review focuses on current cancer cell therapy and description of nanorobotics including its parts, application and nanoroboticsin cancer treatment.
Cite this article:
Divya I. Sahejwani, Achal S. Satpute, Amol V. Sawale. Nanorobotics Revolution: Targeted Precision for Cancer Therapy. Research Journal of Science and Technology. 2024; 16(2):151-8. doi: 10.52711/2349-2988.2024.00022
Cite(Electronic):
Divya I. Sahejwani, Achal S. Satpute, Amol V. Sawale. Nanorobotics Revolution: Targeted Precision for Cancer Therapy. Research Journal of Science and Technology. 2024; 16(2):151-8. doi: 10.52711/2349-2988.2024.00022 Available on: https://rjstonline.com/AbstractView.aspx?PID=2024-16-2-7
10. REFERENCES:
1. Sanchez S, Soler L, Katuri J. Chemically Powered Micro- and Nanomotors. Angew Chem Int Ed Engl. 2015; 54: 1414–44.
2. Chen XZ, Jang B, Ahmed D, Hu C, De Marco C, Hoop M, et al. Small-scale machines driven by external power sources. Adv Mater. 2018; 30: e1705061.
3. Soto F, Wang J, Ahmed R, Demirci U. Medical micro/nanorobots in precision medicine. Adv Sci (Weinh). 2020; 7: 2002203.
4. Mei Y, Solovev AA, Sanchez S, Schmidt OG. Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines. Chem Soc Rev. 2011; 40: 2109–19.
5. Wang J. Can man-made nanomachines compete with nature biomotors? ACS Nano. 2009; 3: 4–9.
6. Oldham K, Sun D, Sun Y. Focused issue on micro-/nano-robotics. Int J Intell Robot Appl. 2018; 2: 381–2.
7. Lenaghan SC, Wang Y, Xi N, Fukuda T, Tarn T, Hamel WR, et al. Grand challenges in bioengineered nanorobotics for cancer therapy. IEEE Trans Biomed Eng. 2013; 60: 667–73.
8. Soto F, Chrostowski R. Frontiers of medical micro/nanorobotics: in vivo applications and commercialization perspectives toward clinical uses. Front Bioeng Biotechnol. 2018; 6: 170.
9. Dr. Michael Haji, The role of Engineering in Nanotechnology, Sheikh Electrical Engineering, Department Northern Illinois University
10. D. Murphy, B. Challacombe, M.S. Khan, and P. Dasgupta, ―Robotic Technology in Urology‖. Postgraduate Medical Journal. 2006; 82(973): 743- 74.
11. E.J. Hanly, M.R. Marohn, S.L. Bachman, M.A. Talamini, S.O. Hacker, R.S. Howard, N.S. Schenkman, ―Multiservice laparoscopic surgical training using the daVinci surgical system‖. The American Journal of Surgery. 2004; 187(2): 309-315.
12. Barrier, B. Guidelines for the Design of Magnetic Nanorobots. 2014; 30(1): 81-92.
13. Lagzi, I. Chemical Robotics – Chemotactic Drug Carriers. Open Medicine. 2013; 8(4): 377-82.
14. Xu, X., Kim, K. and Fan, D. Tunable Release of Multiplex Biochemicals by Plasmonically Active Rotary Nanomotors. Angewandte Chemie (International ed. In English). 2015; 54(8): 2525-9.
15. Couvreur, P. Nanotechnologies for Drug Delivery: Application to Cancer and Autoimmune Diseases. Progress in Solid State Chemistry. 2006; 34(2): 231-5.
16. Janda, E., Nevolo, M., Lehmann, K., Downward, J., Beug, H. and Grieco, M. Raf Plus TGF Beta-Dependent EMT is Initiated by Endocytosis and Lysosomal Degradation of E-Cadherin. Oncogene. 2006; 25(54): 7117-30.
17. Who We Are. Sanger Institute. Accessed May 31, 2016.http://www.sanger.ac.uk/about/who-we-are.
18. Osterlind, K. Chemotherapy in Small Cell Lung Cancer. European Respiratory Journal. 2001; 18(6): 1026-43.
19. Artemov, D. Solaiyappan, M. and Bhujwalla, Z. M. Magnetic Resonance Pharmacoangiography to Detect and Predict Chemotherapy Delivery to Solid Tumors. Cancer Research. 2001; 61(7): 3039-44.
20. Cavalcanti A. Shirinzadeh, B., Freitas Jr, R. A, and Hogg, T. Nanorobot Architecture for Medical Target identification. Nanotechnology 2007; 19(1): 015103.
21. Sharma, N. N. and Mittal, R. K. Nanorobot Movement: Challenges and Biologically Inspired Solutions. International Journal on Smart Sensing and Intelligent Systems. 2008; 1(1): 87-109.
22. Wang, W. Li, S., Mair, L., Ahmed, S., Huang, T. J. And Mallouk, T. E. Acoustic Propulsion of Nanorod Motors Inside Living Cells. Angewandte Chemie. 2014; 126(12): 3265- 68.
23. Gao W. Dong, R., Thamphiwatana, S., Li, J., Gao, W., Zhang, L. and Wang, J. Artificial Micromotors in the Mouse’s Stomach: A Step Toward in vivo Use of Synthetic Motors. ACS Nano. 2015; 9(1): 117-23.
24. Juul S. Iacovelli, F., Falconi, M., Kragh, S. L., Christensen, B., Frøhlich, R., Franch, O., Kristoffersen, E. L., Stougaard, M., Leong, K. W., Ho, Y.-P., Sørensen, E.S., Birkedal, V., Desideri, A. and Knudsen, B. Temperature-Controlled Encapsulation and Release of an Active Enzyme in the Cavity of a Self-Assembled DNA Nanocage. ACS Nano. 2013; 7(11): 9724-34.
25. Gajanan S.S, Sachin L.S, Tarannum S, Dattatray G.H. Nanorobots In Brain Tumour, Int Res J. Pharm. 2011; 2(2): 53-63.