Author(s): Ankur, Rahul Vaishya, Vikas Kumar

Email(s): ankurkadiyan07@gmail.com

DOI: 10.5958/2349-2988.2021.00004.8   

Address: Ankur*, Rahul Vaishya, Vikas Kumar
Department of Production and Industrial Engineering, Punjab Engineering College (Deemed to be University), Chandigarh- 160012 Chandigarh India.
*Corresponding Author

Published In:   Volume - 13,      Issue - 1,     Year - 2021


ABSTRACT:
MR Fluid is a carrier fluid which when subjected to a controlled level of magnetic field application viscosity of the fluid increases that gives rise to visco-elastic solid in an applied magnetic field the fluid developed can transmit the kinematic forces and motion in a controlled manner to enhance the performance characteristics. Magnetic field intensity along with the tool developed imparts high tool flexibility and better control over the finishing force thus obtains the high precision in the surface finish. In this Analysis, the examination of the aspects of various influential process parameters such as the working gap, rotational speed (in rpm) and grain size (in mesh), ball milling time, etc. in the different experiment to examine their effectiveness in the process of surface finish of materials used in the different experiments. The basic material used the preparation of Magnetorheological is carried out by the ball milling of ferromagnetic material i.e Iron and Silicon carbide as an abrasive followed by the addition of binder PVA. XRD and SEM are carrying out for the Magnetorheological fluid developed. The prime objective of the whole process is to study the results as well as the approaches that are going to be followed is examined to enhance the life of the finishing tool MRF, based upon the experiments.


Cite this article:
Ankur, Rahul Vaishya, Vikas Kumar. The Effect of Process Parameters on the Microsurface finish of Magnetorheological Fluid Technology: A Review. Research J. Science and Tech. 2021; 13(1):23-30. doi: 10.5958/2349-2988.2021.00004.8

Cite(Electronic):
Ankur, Rahul Vaishya, Vikas Kumar. The Effect of Process Parameters on the Microsurface finish of Magnetorheological Fluid Technology: A Review. Research J. Science and Tech. 2021; 13(1):23-30. doi: 10.5958/2349-2988.2021.00004.8   Available on: https://rjstonline.com/AbstractView.aspx?PID=2021-13-1-4


REFERENCES:
1.    Jayswal SC, Jain VK, Dixit P. Modeling and simulation of the magnetic abrasive finishing process. The International Journal of Advanced Manufacturing Technology. 2005 Sep 1;26(5-6):477-90.
2.    Chang GW, Yan BH, Hsu RT. Study on cylindrical magnetic abrasive finishing using unbonded magnetic abrasives. International Journal of Machine Tools and Manufacture. 2002 Apr 1;42(5):575-83.
3.    Shinmura T, Takazawa K, Hatano E. Study on magnetic-abrasive finishing. Effects of machining fluid on finishing characteristics. Bulletin of the Japan Society of Precision Engineering. 1986;20(1):52-4.
4.    Shinmura T, Takazawa K, Hatano E, Matsunaga M, Matsuo T. Study on magnetic abrasive finishing. CIRP annals. 1990 Jan 1;39(1):325-8.
5.    Jha S, Jain VK. Design and development of the magnetorheological abrasive flow finishing (MRAFF) process. International Journal of Machine Tools and Manufacture. 2004 Aug 1;44(10):1019-29.
6.    Jha S, Jain V. Modeling and simulation of surface roughness in magnetorheological abrasive flow finishing (MRAFF) process. Wear. 2006 Oct 20;261(7-8):856-66.
7.    Das M, Jain VK, Ghoshdastidar PS. Fluid flow analysis of magnetorheological abrasive flow finishing (MRAFF) process. International Journal of Machine Tools and Manufacture. 2008 Mar 1;48(3-4):415-26.
8.    Kheradmand S, Esmailian M, Fatahy A. A novel approach of magnetorheological abrasive fluid finishing with swirling-assisted inlet flow. Results in physics. 2016 Jan 1;6:568-80.
9.    Das M, Jain VK, Ghoshdastidar PS. Nano-finishing of stainless-steel tubes using rotational magnetorheological abrasive flow finishing process. Machining Science and Technology. 2010 Nov 1;14(3):365-89..
10.    Singh AK, Jha S, Pandey PM. Performance analysis of ball end magnetorheological finishing process with MR polishing fluid. Materials and Manufacturing Processes. 2015 Dec 2;30(12):1482-9..
11.    Singh AK, Jha S, Pandey PM. Design and development of nanofinishing process for 3D surfaces using ball end MR finishing tool. International Journal of Machine Tools and Manufacture. 2011 Feb 1;51(2):142-51.
12.    Niranjan M, Jha S, Kotnala RK. Ball end magnetorheological finishing using bidisperse magnetorheological polishing fluid. Materials and Manufacturing Processes. 2014 Apr 3;29(4):487-92.
13.    Liu X, Wang L, Lu H, Wang D, Chen Q, Wang Z. A study of the effect of nanometer Fe3O4 addition on the properties of silicone oil-based magnetorheological fluids. Materials and Manufacturing Processes. 2015 Feb 1;30(2):204-9.
14.    Fei C, Zuzhi T, Xiangfan W. Novel process to prepare high-performance magnetorheological fluid based on surfactants compounding. Materials and Manufacturing Processes. 2015 Feb 1;30(2):210-5.
15.    Singh DK, Jain VK, Raghuram V. Parametric study of magnetic abrasive finishing process. Journal of materials processing technology. 2004 Jun 10;149(1-3):22-9.
16.    Griffiths DJ. Introduction to electrodynamics.
17.    Teimouri R, Baseri H. Artificial evolutionary approaches to produce smoother surface in magnetic abrasive finishing of hardened AISI 52100 steel. Journal of Mechanical Science and Technology. 2013 Feb 1;27(2):533-9.
18.    Naresh Babu M, Muthukrishnan N. Investigation on surface roughness in abrasive water-jet machining by the response surface method. Materials and Manufacturing Processes. 2014 Dec 2;29(11-12):1422-8.
19.    Priyadarshi D, Sharma RK. Optimization for turning of Al-6061-SiC-Gr hybrid nanocomposites using response surface methodologies. Materials and Manufacturing Processes. 2016 Jul 26;31(10):1342-50.
20.    Yusup N, Zain AM, Hashim SZ. Evolutionary techniques in optimizing machining parameters: Review and recent applications (2007–2011). Expert Systems with Applications. 2012 Aug 1;39(10):9909-27.
21.    Yusup N, Sarkheyli A, Zain AM, Hashim SZ, Ithnin N. Estimation of optimal machining control parameters using artificial bee colony. Journal of Intelligent Manufacturing. 2014 Dec 1;25(6):1463-72.
22.    Zain AM, Haron H, Sharif S. Application of GA to optimize cutting conditions for minimizing surface roughness in end milling machining process. Expert Systems with Applications. 2010 Jun 1;37(6):4650-9.
23.    Kathiresan S, Mohan B. Experimental analysis of magneto rheological abrasive flow finishing process on AISI stainless steel 316L. Materials and Manufacturing Processes. 2018 Mar 12;33(4):422-32.
24.    Zhao ZD, Huang YH, Zhao YG. Preparation of Magnetic Abrasive by Sintering Method. advanced Materials Research 2010 (Vol. 135, pp. 382-387). Trans Tech Publications Ltd.
25.    Ahmad S, Gangwar S, Yadav PC, Singh DK. Optimization of process parameters affecting surface roughness in the magnetic abrasive finishing process. Materials and Manufacturing Processes. 2017 Nov 18;32(15):1723-9.
26.    Singh RK, Singh DK, Gangwar S. Advances in Magnetic Abrasive Finishing for Futuristic Requirements-A Review. Materials today: proceedings. 2018 Jan 1;5(9):20455-63.
27.    Li W, Li X, Yang S, Li W. A newly developed media for magnetic abrasive finishing process: Material removal behavior and finishing performance. Journal of Materials Processing Technology. 2018 Oct 1;260:20-9.
28.    Tang H, Yang W, Liu W, Ma J, Luo X. Characteristics of fixed abrasive polishing for fused silica in the anhydrous environment. Optik. 2020 Feb 1;202:163623.
29.    Zakeri M, Ramezani M, Nazari A. Effect of the ball to powder weight ratio on the mechanochemical synthesis of MoSi2-TiC nanocomposite powder. Materials Research. 2012 Dec;15(6):891-7.
30.    Chen HL, Li WH, Yang SQ, Yang SC. Research of magnetic abrasive prepared by the hot pressing sintering process. In2010 5th IEEE Conference on Industrial Electronics and Applications 2010 Jun 15 (pp. 776-778). IEEE.
31.    Chen HL, Li WH, Yang SC. Study on the performance and evaluating indexes of magnetic abrasive grains. In2009 4th IEEE Conference on Industrial Electronics and Applications 2009 May 25 (pp. 1673-1675). IEEE.
32.    Kuziora P, Wyszyńska M, Polanski M, Bystrzycki J. Why the ball to powder ratio (BPR) is insufficient for describing the mechanical ball milling process. International journal of hydrogen energy. 2014 Jun 15;39(18):9883-7.
33.    Niranjan MS, Jha S. Experimental investigation into tool aging effect in ball end magnetorheological finishing. The International Journal of Advanced Manufacturing Technology. 2015 Oct 1;80(9-12):1895-902.
34.    Shukla VC, Pandey PM. Experimental investigations into the sintering of magnetic abrasive powder for the ultrasonic-assisted magnetic abrasive finishing process. Materials and Manufacturing Processes. 2017 Jan 2;32(1):108-14.
35.    Singh J, Vaishya R, Kumar M (2019) Fabrication of micro features on quartz glass using developed WECDM setup. ARPN J Eng Appl Sci 14:725-731
36.    Kumar M, Vaishya RO, Oza AD, Suri NM (2019) Experimental Investigation of Wire-Electrochemical Discharge Machining (WECDM) Performance Characteristics for Quartz Material. Silicon 12:2211-2220. https://doi.org/10.1007/s12633-019-00309-z
37.    Kumar M, Vaishya RO, Suri NM (2020) Machinability Study of Zirconia Material by Micro-ECDM. In: Sharma V, Dixit U, Sørby K, Bhardwaj A, Trehan R (eds) Manufacturing Engineering. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Singapore, pp 195-209. https://doi.org/10.1007/978-981-15-4619-8_15
38.    Dhiman P, Vaishya R, Kumar M (2019) A review on machining by electrochemical discharge phenomena. Int J Tech Innov Mod Eng Sci 5:71-74.
39.    Kumar, M., R. Vaishya, and P. Parag. 2018. “Real-Time Monitoring System to Lean Manufacturing.” Procedia Manufacturing 20: 135–140. doi:10.1016/j.promfg.2018.02.019.
40.    Kala P, Pandey PM. Experimental study on finishing forces in double-disk magnetic abrasive finishing process while finishing paramagnetic workpiece. Procedia Materials Science. 2014 Jan 1;5:1677-84.
41.    Kumari C, Chak SK. A review of magnetically assisted abrasive finishing and their critical process parameters. Manufacturing Review. 2018;5:13.
42.    Bedi TS, Singh AK. Magnetorheological methods for nano finishing–a review. Particulate Science and Technology. 2016 Jul 1;34(4):412-22.
43.    Park BJ, Song KH, Choi HJ. Magnetic carbonyl iron nanoparticle-based magnetorheological suspension and its characteristics. Materials Letters. 2009 Jun 15;63(15):1350-2.
44.    Jain VK, Kumar P, Behera PK, Jayswal SC. Effect of the working gap and circumferential speed on the performance of the magnetic abrasive finishing process. Wear. 2001 Oct 1;250(1-12):384-90.
45.    Vandan Zendekar, Sagar Sonawale, Ashwini Dhadge, Nikita Takawane. Study of Paraffin wax as a phase change material for heating and cooling load. Research J. Science and Tech. 2020; 12(3):177-182. doi: 10.5958/2349-2988.2020.00024.8
46.    Kuldeep Kumar Verma, Vivek Babele. Evaluation and Enhancement of Transfer line in Production Process by Simulation. Research J. Science and Tech. 2020; 12(2): 110-122. doi: 10.5958/2349-2988.2020.00014.5
47.    Bhushan A. Bhairav, Prajakta A. Kokane, Ravindra B. Saudagar. Hot Melt Extrusion Technique-A Review. Research J. Science and Tech. 2016; 8(3):155-162. doi: 10.5958/2349-2988.2016.00022.X
48.    Padmavathi Vanka, T. Sudha. Big Data Technologies: A Case Study. Research J. Science and Tech. 2017; 9(4): 639-642. doi: 10.5958/2349-2988.2017.00109.7
49.    K. Madhavi, N. Nagendra, G.S.S. Raju, V. Ramachandra Prasad. Heat Transfer Analysis of MHD non-Newtonian fluid over a Horizontal Circular Cylinder with Biot number effect. Research J. Science and Tech. 2017; 9(3):395-399. doi: 10.5958/2349-2988.2017.00069.9
50.    A. Mahesh, P. Durga Prasad, C.S.K. Raju, P. Prakash, S.V.K. Varma. Heat transfer of magnetohydrodynamic flow over a convectively heated cylinder with porous medium. Research J. Science and Tech. 2018; 10(1):83-90. doi: 10.5958/2349-2988.2018.00012.8
51.    Sasikala M., Ramachandraprasad V., Bhuvanavijaya R.. Effects of viscous dissipation and transverse magnetic field heat transfer over a stretching cylinder under convective boundary condition. Research J. Science and Tech. 2017; 9(4): 491-497. doi: 10.5958/2349-2988.2017.00085.7
52.    Convective conditions on magnetohydrodynamic flow over stretched cylinder with time and space dependent heat source or sink. Research J. Science and Tech. 2017; 9(4): 569-575. doi: 10.5958/2349-2988.2017.00096.1
53.    Naresh N. Sarkar, Kishor G. Rewatkar, Vivek M. Nanoti,Nishant T. Tayade. Structural, Magnetic-Electrical Behavior of Zr substituted Ni–Zn Spinel Ferrite. Research J. Science and Tech. 2018; 10(1): 13-18 doi: 0.5958/2349-2988.2018.00003.7
54.    Veena Sharma, Kavita, Sumit Gupta. Hall Effect on Magneto-Thermal Stability of Rivlin-Ericksen Ferromagnetic Fluid Saturating A Porous Medium. Research J. Science and Tech. 2017; 9(1):160-166. doi: 10.5958/2349-2988.2017.00026.2
55.    Suresh Chand, S.K. Kango, Vikram Singh. Triple- Diffusive Convection in a Magnetized Ferrofluid with MFD Viscosity Saturating a Porous Medium: A Nonlinear Stability Analysis. Research J. Science and Tech 5(1): Jan.-Mar.2013 page 01-09.

Recomonded Articles:

Author(s): Leena Sahu, Amit Roy, Trilochan Satapathy

DOI:         Access: Open Access Read More

Author(s): A. Mahesh, P. Durga Prasad, C.S.K. Raju, P. Prakash, S.V.K. Varma

DOI: 10.5958/2349-2988.2018.00012.8         Access: Open Access Read More

Author(s): Harshal Patil, Pawan Meshram, Jyotsna Waghmare

DOI:         Access: Open Access Read More

Author(s): Alpana Sharma

DOI: 10.5958/2349-2988.2017.00018.3         Access: Open Access Read More

Author(s): Prerana H. Salodkar, Nikhil A. Maske, Dipali H. Chaudhari

DOI: 10.5958/2349-2988.2015.00032.7         Access: Open Access Read More

Author(s): Kanimozhi K*. Panneerselvam A.

DOI:         Access: Open Access Read More

Author(s): Pravin A. Dhakite, B. B. Gogte, B. W. Phate

DOI:         Access: Open Access Read More

Author(s): K. Venkateswara Raju, C.S.K. Raju, B. Mamata, M.C. Raju

DOI: 10.5958/2349-2988.2017.00097.3         Access: Open Access Read More

Author(s): Subha K., Kanimozhi K. ,Panneerselvam A.

DOI:         Access: Open Access Read More

Author(s): B. Madhusudhana Rao1*, V. Nagendramma2, C.S.K. Raju3, A. Leelaratnam4, P. Prakash5;

DOI: 10.5958/2349-2988.2017.00096.1         Access: Open Access Read More

Author(s): R.V.S. Prasad

DOI: 10.5958/2349-2988.2017.00101.2         Access: Open Access Read More

Author(s): Ashwani Awasthi, Abhishek Dubey, Rajman Singh, Uday Pratap Singh, Shashikant Tripathi

DOI: 10.5958/2349-2988.2018.00031.1         Access: Open Access Read More

Author(s): Ch. Murali Krishna, K. R. Sekhar, C.S.K. Raju, G. V. Reddy, P. Prakash

DOI: 10.5958/2349-2988.2017.00098.5         Access: Open Access Read More

Author(s): Md. Mateen M. Shaikh, Avinash S. Patil, Parmeshwar L. Ajure, Shrikant V. Lonikar

DOI:         Access: Open Access Read More

Research Journal of Science and Technology (RJST) is an international, peer-reviewed journal, devoted to science and technology...... Read more >>>

RNI: Not Available                     
DOI: 10.5958/2349-2988 


Recent Articles




Tags