Author(s): Sourav Kr. Panja, Subhas Ch. Mandal

Email(s): panjasourav706@gmail.com

DOI: 10.52711/2349-2988.2024.00031   

Address: Sourav Kr. Panja*, Subhas Ch. Mandal
Department of Mathematics, Jadavpur University, Kolkata 700032, West Bengal, India.
*Corresponding Author

Published In:   Volume - 16,      Issue - 3,     Year - 2024


ABSTRACT:
In the present paper, a stationary edge crack is considered in a finite elastic body under the normal loading condition. A compact analysis of finite element approach of an edge crack is studied and the numerical procedure is implemented in the MATLAB software. The displacements along the cracked surface and the stress components are presented graphically. The convergency of the solution is exhibited by means of graphs.


Cite this article:
Sourav Kr. Panja, Subhas Ch. Mandal. A Stationary Edge Crack in a Finite Body: A Finite Element Approach. Research Journal of Science and Technology. 2024; 16(3):211-8. doi: 10.52711/2349-2988.2024.00031

Cite(Electronic):
Sourav Kr. Panja, Subhas Ch. Mandal. A Stationary Edge Crack in a Finite Body: A Finite Element Approach. Research Journal of Science and Technology. 2024; 16(3):211-8. doi: 10.52711/2349-2988.2024.00031   Available on: https://rjstonline.com/AbstractView.aspx?PID=2024-16-3-7


REFERENCES:
1.    Abbas, Ibrahim A. Finite element analysis of the thermoelastic interactions in an unbounded body with a cavity. Forschung im Ingenieurwesen. 2007; 71(3): 215-222.
2.    Abbas, Ibrahim A. Finite element analysis of internal penny-shaped crack problem in an unbounded thermoelastic medium. Journal of Thermal Stresses. 2016; 39(10): 1171-1181.
3.    Alex, Rajan. An analytical and finite element analysis of fracture in nonhomogeneous viscoelastic material. 1994.
4.    Alshoaibi, Abdulnaser M., and Yahya Ali Fageehi. Simulation of quasi-static crack propagation by adaptive finite element method. Metals. 2021; 11(1): 98.
5.    Das, S., et al. Symmetric edge cracks in an orthotropic strip under normal loading. International Journal of Fracture. 2008; 153: 77-84.
6.    Das, S., S. Mukhopadhyay, and R. Prasad. Stress intensity factor of an edge crack in bonded orthotropic materials. International Journal of Fracture. 2011; 168: 117-123.
7.    Das, S., R. Prasad, and S. Mukhopadhyay. Stress intensity factor of an edge crack in composite media. International Journal of Fracture. 2011; 172: 201-207.
8.    Das, Subir. Weight function for an edge crack in an infinite orthotropic strip under normal point loading. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik: Applied Mathematics and Mechanics. 2010; 90(4): 271-277.
9.    Enderlein, M., A. Ricoeur, and M. Kuna. Comparison of finite element techniques for 2D and 3D crack analysis under impact loading. International Journal of Solids and Structures. 2003; 40(13-14): 3425-3437.
10.    Enderlein, Marco, A. Ricoeur, and M. Kuna. Finite element techniques for dynamic crack analysis in piezoelectrics. International Journal of Fracture. 2005; 134: 191-208.
11.    Liebowitz, H., and E. T. Moyer Jr. Finite element methods in fracture mechanics. Computers and Structures. 1989; 31(1): 1-9.
12.    Mohsin, Najah R. Static and dynamic analysis of center cracked finite plate subjected to uniform tensile stress using finite element method. Int. J. Mech. Eng. Technol. 2015; 6(1): 56-70.
13.    Munshi, Nasima, and Subhas Chandra Mandal. Diffraction of p-waves by edge crack in an infinitely long elastic strip. JSME International Journal Series A Solid Mechanics and Material Engineering. 2006; 49(1): 116-122.
14.    Nath, SK Deb. Analytical solution of mixed boundary value problems using the displacement potential approach for the case of plane stress and plane strain conditions. Int J Appl Mech Eng. 2017; 22(2): 269-291.
15.    Noda, Naotake. Thermal stresses in functionally graded materials. Journal of Thermal Stresses. 1999; 22(4-5): 477- 512.
16.    Othman, Mohamed IA, and Ibrahim A. Abbas. Effect of rotation on plane waves at the free surface of a fibre- reinforced thermoelastic half-space using the finite element method. Meccanica. 2011; 46: 413-421.
17.    Panja, Sourav Kumar and S. C. Mandal. Impact response of a finite crack in the presence of magnetic field. Engineering Fracture Mechanics. 2021; 253: 107851.
18.    Sukumar, N., and JH. Prévost. Modeling quasi-static crack growth with the extended finite element method Part I: Computer implementation. International journal of solids and structures. 2003; 40(26): 7513-7537.
19.    Yi, Zhijian, et al. Analytical analysis on the Dugdale model of a finite-width cracked plate by using crack line analysis method. AIP Advances. 2020; 10(11).
20.    Singh, Baljeet, Anand Kumar Yadav, and Sachin Kaushal. Effect of impedance boundary on reflection of plane waves from free surface of a rotating thermoelastic solid half space. Research Journal of Engineering and Technology. 2017; 8(4): 405-413.
21.    Singh, Baljeet. On Rayleigh wave in a generalized porothermoelastic solid half-space. Research Journal of Engineering and Technology. 2018; 9(2): 179-188.
22.    Verma, Gaurav. Theory of Elastic-Plastic Shells. Research Journal of Science and Technology. 2016; 8(1): 41-44.
23.    Verma, K. L. On the Guided Waves in Generalized Dynamical Theories of Thermoelasticity. Research Journal of Science and Technology. 2017; 9(1): 189-194.
24.    Jain, N. K. Vibration Analysis of Fibrous Composite Plates with Central Circular Hole. International Journal of Technology. 2014: 1-3.
25.    Sahoo, Manoj Kumar, O. P. Sahu, and Manish Verma. Vibration analysis of a V-groove edged cracked cantilever beam. International Journal of Technology. 2012: 65-70.
26.    Pathania, Vijayata, and S. Pathania. Thermoelastic Waves Propagation in Layered Plates in Anisotropic Media. Research Journal of Science and Technology. 2013; 5(1): 123-129.
27.    Kumar, R., B. Kumar, and N. Sharma. Reflection and transmission coefficients at the boundary surface of micropolar viscothermoelastic solids with two temperatures. Research Journal of Science and Technology. 2017; 9(3): 323-338.
28.    Thakur, Anita D., and J. N. Sharma. Generalized Piezothermoelastic Continuum Subjected To Temperature Input. Research Journal of Science and Technology. 2013; 5(1): 207-212.
29.    Pathania, Vijayata. Circular Waves Propagation in Thermoelastic Solid-Liquid Interface. Research Journal of Science and Technology.  2017; 9(1): 179-183.


Recomonded Articles:

Author(s): Ganesh Shinde, Godage R. K, Dr R. S. Jadhav, Barhate Manoj, Bhagwat Aniket

DOI: 10.5958/2349-2988.2020.00005.4         Access: Open Access Read More

Author(s): K. Lakshmi, G. Srinivas, R. Bhuvana Vijaya

DOI: 10.5958/2349-2988.2017.00068.7         Access: Open Access Read More

Author(s): L. Sri Varsha, Thenmozhi M S, Asha Ramesh

DOI: 10.5958/2349-2988.2019.00039.1         Access: Open Access Read More

Author(s): Debjit Bhowmik, Rishab Bhanot, Darsh Gautam, Parshuram Rai, K. P. Sampath Kumar

DOI: 10.5958/2349-2988.2018.00022.0         Access: Open Access Read More

Author(s): K. Madhavi, N. Nagendra, G.S.S. Raju, V. Ramachandra Prasad

DOI: 10.5958/2349-2988.2017.00069.9         Access: Open Access Read More

Author(s): S. D. Mankar, Anjali Dama, M. S. Bhosale, Dr. S. S. Sidhheshwar

DOI: 10.5958/2349-2988.2020.00011.X         Access: Open Access Read More

Author(s): Rekha Devi

DOI: 10.5958/2349-2988.2017.00027.4         Access: Open Access Read More

Author(s): Varsha Rani, Nand Lal

DOI: 10.5958/2349-2988.2017.00025.0         Access: Open Access Read More

Research Journal of Science and Technology (RJST) is an international, peer-reviewed journal, devoted to science and technology...... Read more >>>

RNI: Not Available                     
DOI: 10.5958/2349-2988 


Recent Articles




Tags